logo

Requêtes LCM de plage

Étant donné un tableau arr[] d'entiers de taille N et un tableau de requêtes Q query[] où chaque requête est de type [L R] désignant la plage de l'index L à l'index R, la tâche consiste à trouver le LCM de tous les nombres de la plage pour toutes les requêtes.

fmoviez

Exemples :  



Saisir: arr[] = {5 7 5 2 10 12 11 17 14 1 44}
requête[] = {{2 5} {5 10} {0 10}}
Sortir: 6015708 78540
Explication: Dans la première requête LCM(5 2 10 12) = 60 
Dans la deuxième requête LCM(12 11 17 14 1 44) = 15708
Dans la dernière requête LCM(5 7 5 2 10 12 11 17 14 1 44) = 78540

Saisir: arr[] = {2 4 8 16} requête[] = {{2 3} {0 1}}
Sortir: 16 4

Approche naïve : L’approche est basée sur l’idée mathématique suivante :



Mathématiquement  LCM(l r) = LCM(arr[l]  arr[l+1] . . . arr[r-1] arr[r]) et

LCM(a b) = (a*b) / PGCD(ab)

Parcourez donc le tableau pour chaque requête et calculez la réponse en utilisant la formule ci-dessus pour LCM. 



Complexité temporelle : O(N*Q)
Espace auxiliaire : O(1)

Requêtes RangeLCM utilisant   Arborescence des segments :

Comme le nombre de requêtes peut être important, la solution naïve serait peu pratique. Ce temps peut être réduit

Il n'y a aucune opération de mise à jour dans ce problème. Nous pouvons donc dans un premier temps construire un arbre de segments et l'utiliser pour répondre aux requêtes en temps logarithmique.

Chaque nœud de l'arborescence doit stocker la valeur LCM pour ce segment particulier et nous pouvons utiliser la même formule que ci-dessus pour combiner les segments.

java booléen en chaîne

Suivez les étapes mentionnées ci-dessous pour mettre en œuvre l'idée :

  • Construisez une arborescence de segments à partir du tableau donné.
  • Parcourez les requêtes. Pour chaque requête :
    • Recherchez cette plage particulière dans l’arborescence des segments.
    • Utilisez la formule mentionnée ci-dessus pour combiner les segments et calculer le LCM pour cette plage.
    • Imprimez la réponse pour ce segment.

Vous trouverez ci-dessous la mise en œuvre de l’approche ci-dessus. 

C++
// LCM of given range queries using Segment Tree #include    using namespace std; #define MAX 1000 // allocate space for tree int tree[4 * MAX]; // declaring the array globally int arr[MAX]; // Function to return gcd of a and b int gcd(int a int b) {  if (a == 0)  return b;  return gcd(b % a a); } // utility function to find lcm int lcm(int a int b) { return a * b / gcd(a b); } // Function to build the segment tree // Node starts beginning index of current subtree. // start and end are indexes in arr[] which is global void build(int node int start int end) {  // If there is only one element in current subarray  if (start == end) {  tree[node] = arr[start];  return;  }  int mid = (start + end) / 2;  // build left and right segments  build(2 * node start mid);  build(2 * node + 1 mid + 1 end);  // build the parent  int left_lcm = tree[2 * node];  int right_lcm = tree[2 * node + 1];  tree[node] = lcm(left_lcm right_lcm); } // Function to make queries for array range )l r). // Node is index of root of current segment in segment // tree (Note that indexes in segment tree begin with 1 // for simplicity). // start and end are indexes of subarray covered by root // of current segment. int query(int node int start int end int l int r) {  // Completely outside the segment returning  // 1 will not affect the lcm;  if (end < l || start > r)  return 1;  // completely inside the segment  if (l <= start && r >= end)  return tree[node];  // partially inside  int mid = (start + end) / 2;  int left_lcm = query(2 * node start mid l r);  int right_lcm = query(2 * node + 1 mid + 1 end l r);  return lcm(left_lcm right_lcm); } // driver function to check the above program int main() {  // initialize the array  arr[0] = 5;  arr[1] = 7;  arr[2] = 5;  arr[3] = 2;  arr[4] = 10;  arr[5] = 12;  arr[6] = 11;  arr[7] = 17;  arr[8] = 14;  arr[9] = 1;  arr[10] = 44;  // build the segment tree  build(1 0 10);  // Now we can answer each query efficiently  // Print LCM of (2 5)  cout << query(1 0 10 2 5) << endl;  // Print LCM of (5 10)  cout << query(1 0 10 5 10) << endl;  // Print LCM of (0 10)  cout << query(1 0 10 0 10) << endl;  return 0; } 
Java
// LCM of given range queries // using Segment Tree class GFG {  static final int MAX = 1000;  // allocate space for tree  static int tree[] = new int[4 * MAX];  // declaring the array globally  static int arr[] = new int[MAX];  // Function to return gcd of a and b  static int gcd(int a int b)  {  if (a == 0) {  return b;  }  return gcd(b % a a);  }  // utility function to find lcm  static int lcm(int a int b)  {  return a * b / gcd(a b);  }  // Function to build the segment tree  // Node starts beginning index  // of current subtree. start and end  // are indexes in arr[] which is global  static void build(int node int start int end)  {  // If there is only one element  // in current subarray  if (start == end) {  tree[node] = arr[start];  return;  }  int mid = (start + end) / 2;  // build left and right segments  build(2 * node start mid);  build(2 * node + 1 mid + 1 end);  // build the parent  int left_lcm = tree[2 * node];  int right_lcm = tree[2 * node + 1];  tree[node] = lcm(left_lcm right_lcm);  }  // Function to make queries for  // array range )l r). Node is index  // of root of current segment in segment  // tree (Note that indexes in segment  // tree begin with 1 for simplicity).  // start and end are indexes of subarray  // covered by root of current segment.  static int query(int node int start int end int l  int r)  {  // Completely outside the segment returning  // 1 will not affect the lcm;  if (end < l || start > r) {  return 1;  }  // completely inside the segment  if (l <= start && r >= end) {  return tree[node];  }  // partially inside  int mid = (start + end) / 2;  int left_lcm = query(2 * node start mid l r);  int right_lcm  = query(2 * node + 1 mid + 1 end l r);  return lcm(left_lcm right_lcm);  }  // Driver code  public static void main(String[] args)  {  // initialize the array  arr[0] = 5;  arr[1] = 7;  arr[2] = 5;  arr[3] = 2;  arr[4] = 10;  arr[5] = 12;  arr[6] = 11;  arr[7] = 17;  arr[8] = 14;  arr[9] = 1;  arr[10] = 44;  // build the segment tree  build(1 0 10);  // Now we can answer each query efficiently  // Print LCM of (2 5)  System.out.println(query(1 0 10 2 5));  // Print LCM of (5 10)  System.out.println(query(1 0 10 5 10));  // Print LCM of (0 10)  System.out.println(query(1 0 10 0 10));  } } // This code is contributed by 29AjayKumar 
Python
# LCM of given range queries using Segment Tree MAX = 1000 # allocate space for tree tree = [0] * (4 * MAX) # declaring the array globally arr = [0] * MAX # Function to return gcd of a and b def gcd(a: int b: int): if a == 0: return b return gcd(b % a a) # utility function to find lcm def lcm(a: int b: int): return (a * b) // gcd(a b) # Function to build the segment tree # Node starts beginning index of current subtree. # start and end are indexes in arr[] which is global def build(node: int start: int end: int): # If there is only one element # in current subarray if start == end: tree[node] = arr[start] return mid = (start + end) // 2 # build left and right segments build(2 * node start mid) build(2 * node + 1 mid + 1 end) # build the parent left_lcm = tree[2 * node] right_lcm = tree[2 * node + 1] tree[node] = lcm(left_lcm right_lcm) # Function to make queries for array range )l r). # Node is index of root of current segment in segment # tree (Note that indexes in segment tree begin with 1 # for simplicity). # start and end are indexes of subarray covered by root # of current segment. def query(node: int start: int end: int l: int r: int): # Completely outside the segment # returning 1 will not affect the lcm; if end < l or start > r: return 1 # completely inside the segment if l <= start and r >= end: return tree[node] # partially inside mid = (start + end) // 2 left_lcm = query(2 * node start mid l r) right_lcm = query(2 * node + 1 mid + 1 end l r) return lcm(left_lcm right_lcm) # Driver Code if __name__ == '__main__': # initialize the array arr[0] = 5 arr[1] = 7 arr[2] = 5 arr[3] = 2 arr[4] = 10 arr[5] = 12 arr[6] = 11 arr[7] = 17 arr[8] = 14 arr[9] = 1 arr[10] = 44 # build the segment tree build(1 0 10) # Now we can answer each query efficiently # Print LCM of (2 5) print(query(1 0 10 2 5)) # Print LCM of (5 10) print(query(1 0 10 5 10)) # Print LCM of (0 10) print(query(1 0 10 0 10)) # This code is contributed by # sanjeev2552 
C#
// LCM of given range queries // using Segment Tree using System; using System.Collections.Generic; class GFG {  static readonly int MAX = 1000;  // allocate space for tree  static int[] tree = new int[4 * MAX];  // declaring the array globally  static int[] arr = new int[MAX];  // Function to return gcd of a and b  static int gcd(int a int b)  {  if (a == 0) {  return b;  }  return gcd(b % a a);  }  // utility function to find lcm  static int lcm(int a int b)  {  return a * b / gcd(a b);  }  // Function to build the segment tree  // Node starts beginning index  // of current subtree. start and end  // are indexes in []arr which is global  static void build(int node int start int end)  {  // If there is only one element  // in current subarray  if (start == end) {  tree[node] = arr[start];  return;  }  int mid = (start + end) / 2;  // build left and right segments  build(2 * node start mid);  build(2 * node + 1 mid + 1 end);  // build the parent  int left_lcm = tree[2 * node];  int right_lcm = tree[2 * node + 1];  tree[node] = lcm(left_lcm right_lcm);  }  // Function to make queries for  // array range )l r). Node is index  // of root of current segment in segment  // tree (Note that indexes in segment  // tree begin with 1 for simplicity).  // start and end are indexes of subarray  // covered by root of current segment.  static int query(int node int start int end int l  int r)  {  // Completely outside the segment  // returning 1 will not affect the lcm;  if (end < l || start > r) {  return 1;  }  // completely inside the segment  if (l <= start && r >= end) {  return tree[node];  }  // partially inside  int mid = (start + end) / 2;  int left_lcm = query(2 * node start mid l r);  int right_lcm  = query(2 * node + 1 mid + 1 end l r);  return lcm(left_lcm right_lcm);  }  // Driver code  public static void Main(String[] args)  {  // initialize the array  arr[0] = 5;  arr[1] = 7;  arr[2] = 5;  arr[3] = 2;  arr[4] = 10;  arr[5] = 12;  arr[6] = 11;  arr[7] = 17;  arr[8] = 14;  arr[9] = 1;  arr[10] = 44;  // build the segment tree  build(1 0 10);  // Now we can answer each query efficiently  // Print LCM of (2 5)  Console.WriteLine(query(1 0 10 2 5));  // Print LCM of (5 10)  Console.WriteLine(query(1 0 10 5 10));  // Print LCM of (0 10)  Console.WriteLine(query(1 0 10 0 10));  } } // This code is contributed by Rajput-Ji 
JavaScript
<script> // LCM of given range queries using Segment Tree const MAX = 1000 // allocate space for tree var tree = new Array(4*MAX); // declaring the array globally var arr = new Array(MAX); // Function to return gcd of a and b function gcd(a b) {  if (a == 0)  return b;  return gcd(b%a a); } //utility function to find lcm function lcm(a b) {  return Math.floor(a*b/gcd(ab)); } // Function to build the segment tree // Node starts beginning index of current subtree. // start and end are indexes in arr[] which is global function build(node start end) {  // If there is only one element in current subarray  if (start==end)  {  tree[node] = arr[start];  return;  }  let mid = Math.floor((start+end)/2);  // build left and right segments  build(2*node start mid);  build(2*node+1 mid+1 end);  // build the parent  let left_lcm = tree[2*node];  let right_lcm = tree[2*node+1];  tree[node] = lcm(left_lcm right_lcm); } // Function to make queries for array range )l r). // Node is index of root of current segment in segment // tree (Note that indexes in segment tree begin with 1 // for simplicity). // start and end are indexes of subarray covered by root // of current segment. function query(node start end l r) {  // Completely outside the segment returning  // 1 will not affect the lcm;  if (end<l || start>r)  return 1;  // completely inside the segment  if (l<=start && r>=end)  return tree[node];  // partially inside  let mid = Math.floor((start+end)/2);  let left_lcm = query(2*node start mid l r);  let right_lcm = query(2*node+1 mid+1 end l r);  return lcm(left_lcm right_lcm); } //driver function to check the above program  //initialize the array  arr[0] = 5;  arr[1] = 7;  arr[2] = 5;  arr[3] = 2;  arr[4] = 10;  arr[5] = 12;  arr[6] = 11;  arr[7] = 17;  arr[8] = 14;  arr[9] = 1;  arr[10] = 44;  // build the segment tree  build(1 0 10);  // Now we can answer each query efficiently  // Print LCM of (2 5)  document.write(query(1 0 10 2 5) +'  
'
); // Print LCM of (5 10) document.write(query(1 0 10 5 10) + '
'
); // Print LCM of (0 10) document.write(query(1 0 10 0 10) + '
'
); // This code is contributed by Manoj. </script>

Sortir
60 15708 78540

Complexité temporelle : O(Log N * Log n) où N est le nombre d'éléments dans le tableau. L'autre log n indique le temps nécessaire pour trouver le LCM. Cette complexité temporelle concerne chaque requête. La complexité temporelle totale est O(N + Q*Log N*log n), car un temps O(N) est nécessaire pour construire l'arborescence, puis pour répondre aux requêtes.
Espace auxiliaire : O(N) où N est le nombre d'éléments dans le tableau. Cet espace est requis pour stocker l’arborescence des segments.

Sujet connexe : Arbre de segments

Approche n°2 : Utiliser les mathématiques

Nous définissons d’abord une fonction d’assistance lcm() pour calculer le plus petit commun multiple de deux nombres. Ensuite, pour chaque requête, nous parcourons le sous-tableau de arr défini par la plage de requêtes et calculons le LCM à l'aide de la fonction lcm(). La valeur LCM est stockée dans une liste qui est renvoyée comme résultat final.

Arbre de segments

liste sur Java

Approche n°2 : Utiliser les mathématiques

Algorithme

Arbre de segments

Approche n°2 : Utiliser les mathématiques

1. Définissez une fonction d'assistance lcm(a b) pour calculer le plus petit commun multiple de deux nombres.
2. Définissez une fonction range_lcm_queries(arr queries) qui prend en entrée un tableau arr et une liste de requêtes de plages de requêtes.
3. Créez une liste de résultats vide pour stocker les valeurs LCM pour chaque requête.
4. Pour chaque requête dans les requêtes, extrayez les indices gauche et droit l et r.
5. Définissez lcm_val sur la valeur de arr[l].
6. Pour chaque index i compris dans la plage l+1 à r, mettez à jour lcm_val pour qu'il soit le LCM de lcm_val et arr[i] à l'aide de la fonction lcm().
7. Ajoutez lcm_val à la liste des résultats.
8. Renvoyez la liste des résultats.

Arbre de segments

Approche n°2 : Utiliser les mathématiques

C++

#include    #include  #include    using namespace std; int gcd(int a int b) {  if (b == 0)  return a;  return gcd(b a % b); } int lcm(int a int b) {  return a * b / gcd(a b); } vector<int> rangeLcmQueries(vector<int>& arr vector<pair<int int>>& queries) {  vector<int> results;  for (const auto& query : queries) {  int l = query.first;  int r = query.second;  int lcmVal = arr[l];  for (int i = l + 1; i <= r; i++) {  lcmVal = lcm(lcmVal arr[i]);  }  results.push_back(lcmVal);  }  return results; } int main() {  vector<int> arr = {5 7 5 2 10 12 11 17 14 1 44};  vector<pair<int int>> queries = {{2 5} {5 10} {0 10}};  vector<int> results = rangeLcmQueries(arr queries);  for (const auto& result : results) {  cout << result << ' ';  }  cout << endl;  return 0; } 
Java
/*package whatever //do not write package name here */ import java.util.ArrayList; import java.util.List; public class GFG {  public static int gcd(int a int b) {  if (b == 0)  return a;  return gcd(b a % b);  }  public static int lcm(int a int b) {  return a * b / gcd(a b);  }  public static List<Integer> rangeLcmQueries(List<Integer> arr List<int[]> queries) {  List<Integer> results = new ArrayList<>();  for (int[] query : queries) {  int l = query[0];  int r = query[1];  int lcmVal = arr.get(l);  for (int i = l + 1; i <= r; i++) {  lcmVal = lcm(lcmVal arr.get(i));  }  results.add(lcmVal);  }  return results;  }  public static void main(String[] args) {  List<Integer> arr = List.of(5 7 5 2 10 12 11 17 14 1 44);  List<int[]> queries = List.of(new int[]{2 5} new int[]{5 10} new int[]{0 10});  List<Integer> results = rangeLcmQueries(arr queries);  for (int result : results) {  System.out.print(result + ' ');  }  System.out.println();  } } 
Python
from math import gcd def lcm(a b): return a*b // gcd(a b) def range_lcm_queries(arr queries): results = [] for query in queries: l r = query lcm_val = arr[l] for i in range(l+1 r+1): lcm_val = lcm(lcm_val arr[i]) results.append(lcm_val) return results # example usage arr = [5 7 5 2 10 12 11 17 14 1 44] queries = [(2 5) (5 10) (0 10)] print(range_lcm_queries(arr queries)) # output: [60 15708 78540] 
C#
using System; using System.Collections.Generic; class GFG {  // Function to calculate the greatest common divisor (GCD)   // using Euclidean algorithm  static int GCD(int a int b)  {  if (b == 0)  return a;  return GCD(b a % b);  }  // Function to calculate the least common multiple (LCM)   // using GCD  static int LCM(int a int b)  {  return a * b / GCD(a b);  }  static List<int> RangeLcmQueries(List<int> arr List<Tuple<int int>> queries)  {  List<int> results = new List<int>();  foreach (var query in queries)  {  int l = query.Item1;  int r = query.Item2;  int lcmVal = arr[l];  for (int i = l + 1; i <= r; i++)  {  lcmVal = LCM(lcmVal arr[i]);  }  results.Add(lcmVal);  }  return results;  }  static void Main()  {  List<int> arr = new List<int> { 5 7 5 2 10 12 11 17 14 1 44 };  List<Tuple<int int>> queries = new List<Tuple<int int>> {  Tuple.Create(2 5)  Tuple.Create(5 10)  Tuple.Create(0 10)  };  List<int> results = RangeLcmQueries(arr queries);  foreach (var result in results)  {  Console.Write(result + ' ');  }  Console.WriteLine();  } } 
JavaScript
// JavaScript Program for the above approach // function to find out gcd function gcd(a b) {  if (b === 0) {  return a;  }  return gcd(b a % b); } // function to find out lcm function lcm(a b) {  return (a * b) / gcd(a b); } function rangeLcmQueries(arr queries) {  const results = [];  for (const query of queries) {  const l = query[0];  const r = query[1];  let lcmVal = arr[l];  for (let i = l + 1; i <= r; i++) {  lcmVal = lcm(lcmVal arr[i]);  }  results.push(lcmVal);  }  return results; } // Driver code to test above function const arr = [5 7 5 2 10 12 11 17 14 1 44]; const queries = [[2 5] [5 10] [0 10]]; const results = rangeLcmQueries(arr queries); for (const result of results) {  console.log(result + ' '); } console.log(); // THIS CODE IS CONTRIBUTED BY PIYUSH AGARWAL 

Sortir
[60 15708 78540]

Complexité temporelle : O(log(min(ab))). Pour chaque plage de requêtes, nous parcourons un sous-tableau de taille O(n) où n est la longueur de arr. Par conséquent, la complexité temporelle de la fonction globale est O(qn log(min(a_i))) où q est le nombre de requêtes et a_i est le i-ème élément de arr.
Complexité spatiale : O(1) puisque nous ne stockons que quelques entiers à la fois. L'espace utilisé par l'arr d'entrée et les requêtes n'est pas pris en compte.