logo

Trouver le palindrome le plus long formé en supprimant ou en mélangeant les caractères d'une chaîne

Étant donné une chaîne, recherchez le palindrome le plus long pouvant être construit en supprimant ou en mélangeant des caractères de la chaîne. Renvoie un seul palindrome s’il existe plusieurs chaînes de palindrome de la plus longue longueur.

Exemples : 



  Input:    abc   Output:   a OR b OR c   Input:    aabbcc   Output:   abccba OR baccab OR cbaabc OR any other palindromic string of length 6.   Input:    abbaccd   Output:   abcdcba OR ...   Input:    aba   Output:   aba

Nous pouvons diviser n’importe quelle chaîne palindromique en trois parties – début du milieu et fin. Pour une chaîne palindromique de longueur impaire, disons 2n + 1 'beg' se compose des n premiers caractères de la chaîne, 'mid' sera composé d'un seul caractère, c'est-à-dire (n + 1)ème caractère et 'end' sera constitué des n derniers caractères de la chaîne palindromique. Pour une chaîne palindromique de longueur paire, 2n 'mid' sera toujours vide. Il convient de noter que « end » sera l'inverse de « beg » pour que la chaîne soit un palindrome.

L'idée est d'utiliser l'observation ci-dessus dans notre solution. Comme le mélange des caractères est autorisé, l'ordre des caractères n'a pas d'importance dans la chaîne d'entrée. Nous obtenons d’abord la fréquence de chaque caractère dans la chaîne d’entrée. Ensuite, tous les caractères ayant une occurrence paire (disons 2n) dans la chaîne d'entrée feront partie de la chaîne de sortie car nous pouvons facilement placer n caractères dans la chaîne « début » et les n autres caractères dans la chaîne « fin » (en préservant l'ordre palindromique). Pour les caractères ayant une occurrence impaire (disons 2n + 1), nous remplissons « milieu » avec l'un de tous ces caractères. et les 2n caractères restants sont divisés en moitiés et ajoutés au début et à la fin.

Vous trouverez ci-dessous la mise en œuvre de l'idée ci-dessus 



si et sinon en bash
C++
// C++ program to find the longest palindrome by removing // or shuffling characters from the given string #include    using namespace std; // Function to find the longest palindrome by removing // or shuffling characters from the given string string findLongestPalindrome(string str) {  // to stores freq of characters in a string  int count[256] = { 0 };  // find freq of characters in the input string  for (int i = 0; i < str.size(); i++)  count[str[i]]++;  // Any palindromic string consists of three parts  // beg + mid + end  string beg = '' mid = '' end = '';  // solution assumes only lowercase characters are  // present in string. We can easily extend this  // to consider any set of characters  for (char ch = 'a'; ch <= 'z'; ch++)  {  // if the current character freq is odd  if (count[ch] & 1)  {  // mid will contain only 1 character. It  // will be overridden with next character  // with odd freq  mid = ch;  // decrement the character freq to make  // it even and consider current character  // again  count[ch--]--;  }  // if the current character freq is even  else  {  // If count is n(an even number) push  // n/2 characters to beg string and rest  // n/2 characters will form part of end  // string  for (int i = 0; i < count[ch]/2 ; i++)  beg.push_back(ch);  }  }  // end will be reverse of beg  end = beg;  reverse(end.begin() end.end());  // return palindrome string  return beg + mid + end; } // Driver code int main() {  string str = 'abbaccd';  cout << findLongestPalindrome(str);  return 0; } 
Java
// Java program to find the longest palindrome by removing // or shuffling characters from the given string class GFG { // Function to find the longest palindrome by removing // or shuffling characters from the given string  static String findLongestPalindrome(String str) {  // to stores freq of characters in a string  int count[] = new int[256];  // find freq of characters in the input string  for (int i = 0; i < str.length(); i++) {  count[str.charAt(i)]++;  }  // Any palindromic string consists of three parts  // beg + mid + end  String beg = '' mid = '' end = '';  // solution assumes only lowercase characters are  // present in string. We can easily extend this  // to consider any set of characters  for (char ch = 'a'; ch <= 'z'; ch++) {  // if the current character freq is odd  if (count[ch] % 2 == 1) {  // mid will contain only 1 character. It  // will be overridden with next character  // with odd freq  mid = String.valueOf(ch);  // decrement the character freq to make  // it even and consider current character  // again  count[ch--]--;  } // if the current character freq is even  else {  // If count is n(an even number) push  // n/2 characters to beg string and rest  // n/2 characters will form part of end  // string  for (int i = 0; i < count[ch] / 2; i++) {  beg += ch;  }  }  }  // end will be reverse of beg  end = beg;  end = reverse(end);  // return palindrome string  return beg + mid + end;  }  static String reverse(String str) {  // convert String to character array   // by using toCharArray   String ans = '';  char[] try1 = str.toCharArray();  for (int i = try1.length - 1; i >= 0; i--) {  ans += try1[i];  }  return ans;  }  // Driver code  public static void main(String[] args) {  String str = 'abbaccd';  System.out.println(findLongestPalindrome(str));  } } // This code is contributed by PrinciRaj1992 
Python3
# Python3 program to find the longest palindrome by removing # or shuffling characters from the given string # Function to find the longest palindrome by removing # or shuffling characters from the given string def findLongestPalindrome(strr): # to stores freq of characters in a string count = [0]*256 # find freq of characters in the input string for i in range(len(strr)): count[ord(strr[i])] += 1 # Any palindromic consists of three parts # beg + mid + end beg = '' mid = '' end = '' # solution assumes only lowercase characters are # present in string. We can easily extend this # to consider any set of characters ch = ord('a') while ch <= ord('z'): # if the current character freq is odd if (count[ch] & 1): # mid will contain only 1 character. It # will be overridden with next character # with odd freq mid = ch # decrement the character freq to make # it even and consider current character # again count[ch] -= 1 ch -= 1 # if the current character freq is even else: # If count is n(an even number) push # n/2 characters to beg and rest # n/2 characters will form part of end # string for i in range(count[ch]//2): beg += chr(ch) ch += 1 # end will be reverse of beg end = beg end = end[::-1] # return palindrome string return beg + chr(mid) + end # Driver code strr = 'abbaccd' print(findLongestPalindrome(strr)) # This code is contributed by mohit kumar 29 
C#
// C# program to find the longest  // palindrome by removing or // shuffling characters from  // the given string using System; class GFG {  // Function to find the longest   // palindrome by removing or   // shuffling characters from   // the given string  static String findLongestPalindrome(String str)   {  // to stores freq of characters in a string  int []count = new int[256];  // find freq of characters   // in the input string  for (int i = 0; i < str.Length; i++)   {  count[str[i]]++;  }  // Any palindromic string consists of   // three parts beg + mid + end  String beg = '' mid = '' end = '';  // solution assumes only lowercase   // characters are present in string.  // We can easily extend this to   // consider any set of characters  for (char ch = 'a'; ch <= 'z'; ch++)     {  // if the current character freq is odd  if (count[ch] % 2 == 1)   {    // mid will contain only 1 character.   // It will be overridden with next   // character with odd freq  mid = String.Join(''ch);  // decrement the character freq to make  // it even and consider current   // character again  count[ch--]--;  }     // if the current character freq is even  else   {    // If count is n(an even number) push  // n/2 characters to beg string and rest  // n/2 characters will form part of end  // string  for (int i = 0; i < count[ch] / 2; i++)   {  beg += ch;  }  }  }  // end will be reverse of beg  end = beg;  end = reverse(end);  // return palindrome string  return beg + mid + end;  }  static String reverse(String str)   {  // convert String to character array   // by using toCharArray   String ans = '';  char[] try1 = str.ToCharArray();  for (int i = try1.Length - 1; i >= 0; i--)   {  ans += try1[i];  }  return ans;  }  // Driver code  public static void Main()   {  String str = 'abbaccd';  Console.WriteLine(findLongestPalindrome(str));  } } // This code is contributed by 29AjayKumar 
JavaScript
<script> // Javascript program to find the  // longest palindrome by removing // or shuffling characters from  // the given string // Function to find the longest  // palindrome by removing // or shuffling characters from // the given string  function findLongestPalindrome(str)  {  // to stores freq of characters   // in a string  let count = new Array(256);  for(let i=0;i<256;i++)  {  count[i]=0;  }    // find freq of characters in   // the input string  for (let i = 0; i < str.length; i++) {  count[str[i].charCodeAt(0)]++;  }    // Any palindromic string consists  // of three parts  // beg + mid + end  let beg = '' mid = '' end = '';    // solution assumes only   // lowercase characters are  // present in string.   // We can easily extend this  // to consider any set of characters  for (let ch = 'a'.charCodeAt(0);   ch <= 'z'.charCodeAt(0); ch++) {  // if the current character freq is odd  if (count[ch] % 2 == 1) {  // mid will contain only 1 character. It  // will be overridden with next character  // with odd freq  mid = String.fromCharCode(ch);    // decrement the character freq to make  // it even and consider current character  // again  count[ch--]--;  } // if the current character freq is even  else {  // If count is n(an even number) push  // n/2 characters to beg string and rest  // n/2 characters will form part of end  // string  for (let i = 0; i < count[ch] / 2; i++)   {  beg += String.fromCharCode(ch);  }  }  }    // end will be reverse of beg  end = beg;  end = reverse(end);    // return palindrome string  return beg + mid + end;  }    function reverse(str)  {  // convert String to character array   // by using toCharArray   let ans = '';  let try1 = str.split('');    for (let i = try1.length - 1; i >= 0; i--) {  ans += try1[i];  }  return ans;  }    // Driver code  let str = 'abbaccd';  document.write(findLongestPalindrome(str));    // This code is contributed by unknown2108   </script> 

Sortir
abcdcba

Complexité temporelle de la solution ci-dessus est O(n) où n est la longueur de la chaîne. Le nombre de caractères de l’alphabet étant constant, ils ne contribuent pas à l’analyse asymptotique.
Espace auxiliaire utilisé par le programme est M où M est le nombre de caractères ASCII.