logo

Tri par fusion simultanée dans la mémoire partagée

Étant donné un nombre 'n' et un nombre n, trier les nombres en utilisant Concurrent Fusionner le tri. (Indice : essayez d'utiliser les appels système shmget shmat).
Partie 1 : L'algorithme (COMMENT ?)  
Créez de manière récursive deux processus enfants, un pour la moitié gauche et un pour la moitié droite. Si le nombre d'éléments dans le tableau d'un processus est inférieur à 5, effectuez une Tri par insertion . Le parent des deux enfants fusionne ensuite le résultat et revient au parent et ainsi de suite. Mais comment rendre cela simultané ?
Partie 2 : La logique (POURQUOI ?)  
La partie importante de la solution à ce problème n’est pas algorithmique mais consiste à expliquer les concepts de système d’exploitation et de noyau. 
Pour réaliser un tri simultané, nous avons besoin d'un moyen de faire fonctionner deux processus sur le même tableau en même temps. Pour faciliter les choses, Linux fournit de nombreux appels système via de simples points de terminaison API. Deux d'entre eux sont shmget() (pour l'allocation de mémoire partagée) et shmat() (pour les opérations de mémoire partagée). Nous créons un espace mémoire partagé entre le processus enfant que nous bifurquons. Chaque segment est divisé en enfants gauche et droit qui sont triés, la partie intéressante étant qu'ils travaillent simultanément ! shmget() demande au noyau d'attribuer un page partagée pour les deux processus.
Pourquoi le fork() traditionnel ne fonctionne pas ?  
La réponse réside dans ce que fait réellement fork(). D'après la documentation 'fork() crée un nouveau processus en dupliquant le processus appelant'. Le processus enfant et le processus parent s'exécutent dans des espaces mémoire distincts. Au moment de fork(), les deux espaces mémoire ont le même contenu. La mémoire écrit les modifications du descripteur de fichier (fd), etc. effectuées par l'un des processus n'affectent pas l'autre. Nous avons donc besoin d'un segment de mémoire partagée.
 

CPP
#include    #include  #include  #include  #include  #include  #include  #include  void insertionSort(int arr[] int n); void merge(int a[] int l1 int h1 int h2); void mergeSort(int a[] int l int h) {  int i len = (h - l + 1);  // Using insertion sort for small sized array  if (len <= 5)  {  insertionSort(a + l len);  return;  }  pid_t lpid rpid;  lpid = fork();  if (lpid < 0)  {  // Lchild proc not created  perror('Left Child Proc. not createdn');  _exit(-1);  }  else if (lpid == 0)  {  mergeSort(a l l + len / 2 - 1);  _exit(0);  }  else  {  rpid = fork();  if (rpid < 0)  {  // Rchild proc not created  perror('Right Child Proc. not createdn');  _exit(-1);  }  else if (rpid == 0)  {  mergeSort(a l + len / 2 h);  _exit(0);  }  }  int status;  // Wait for child processes to finish  waitpid(lpid &status 0);  waitpid(rpid &status 0);  // Merge the sorted subarrays  merge(a l l + len / 2 - 1 h); } /* Function to sort an array using insertion sort*/ void insertionSort(int arr[] int n) {  int i key j;  for (i = 1; i < n; i++)  {  key = arr[i];  j = i - 1;  /* Move elements of arr[0..i-1] that are  greater than key to one position ahead  of their current position */  while (j >= 0 && arr[j] > key)  {  arr[j + 1] = arr[j];  j = j - 1;  }  arr[j + 1] = key;  } } // Method to merge sorted subarrays void merge(int a[] int l1 int h1 int h2) {  // We can directly copy the sorted elements  // in the final array no need for a temporary  // sorted array.  int count = h2 - l1 + 1;  int sorted[count];  int i = l1 k = h1 + 1 m = 0;  while (i <= h1 && k <= h2)  {  if (a[i] < a[k])  sorted[m++] = a[i++];  else if (a[k] < a[i])  sorted[m++] = a[k++];  else if (a[i] == a[k])  {  sorted[m++] = a[i++];  sorted[m++] = a[k++];  }  }  while (i <= h1)  sorted[m++] = a[i++];  while (k <= h2)  sorted[m++] = a[k++];  int arr_count = l1;  for (i = 0; i < count; i++ l1++)  a[l1] = sorted[i]; } // To check if array is actually sorted or not void isSorted(int arr[] int len) {  if (len == 1)  {  std::cout << 'Sorting Done Successfully' << std::endl;  return;  }  int i;  for (i = 1; i < len; i++)  {  if (arr[i] < arr[i - 1])  {  std::cout << 'Sorting Not Done' << std::endl;  return;  }  }  std::cout << 'Sorting Done Successfully' << std::endl;  return; } // To fill random values in array for testing // purpose void fillData(int a[] int len) {  // Create random arrays  int i;  for (i = 0; i < len; i++)  a[i] = rand();  return; } // Driver code int main() {  int shmid;  key_t key = IPC_PRIVATE;  int *shm_array;  int length = 128;  // Calculate segment length  size_t SHM_SIZE = sizeof(int) * length;  // Create the segment.  if ((shmid = shmget(key SHM_SIZE IPC_CREAT | 0666)) < 0)  {  perror('shmget');  _exit(1);  }  // Now we attach the segment to our data space.  if ((shm_array = (int *)shmat(shmid NULL 0)) == (int *)-1)  {  perror('shmat');  _exit(1);  }  // Create a random array of given length  srand(time(NULL));  fillData(shm_array length);  // Sort the created array  mergeSort(shm_array 0 length - 1);  // Check if array is sorted or not  isSorted(shm_array length);  /* Detach from the shared memory now that we are  done using it. */  if (shmdt(shm_array) == -1)  {  perror('shmdt');  _exit(1);  }  /* Delete the shared memory segment. */  if (shmctl(shmid IPC_RMID NULL) == -1)  {  perror('shmctl');  _exit(1);  }  return 0; } 
Java
import java.util.Arrays; import java.util.Random; import java.util.concurrent.ForkJoinPool; import java.util.concurrent.RecursiveAction; public class ConcurrentMergeSort {  // Method to merge sorted subarrays  private static void merge(int[] a int low int mid int high) {  int[] temp = new int[high - low + 1];  int i = low j = mid + 1 k = 0;  while (i <= mid && j <= high) {  if (a[i] <= a[j]) {  temp[k++] = a[i++];  } else {  temp[k++] = a[j++];  }  }  while (i <= mid) {  temp[k++] = a[i++];  }  while (j <= high) {  temp[k++] = a[j++];  }  System.arraycopy(temp 0 a low temp.length);  }  // RecursiveAction for fork/join framework  static class SortTask extends RecursiveAction {  private final int[] a;  private final int low high;  SortTask(int[] a int low int high) {  this.a = a;  this.low = low;  this.high = high;  }  @Override  protected void compute() {  if (high - low <= 5) {  Arrays.sort(a low high + 1);  } else {  int mid = low + (high - low) / 2;  invokeAll(new SortTask(a low mid) new SortTask(a mid + 1 high));  merge(a low mid high);  }  }  }  // Method to check if array is sorted  private static boolean isSorted(int[] a) {  for (int i = 0; i < a.length - 1; i++) {  if (a[i] > a[i + 1]) {  return false;  }  }  return true;  }  // Method to fill array with random numbers  private static void fillData(int[] a) {  Random rand = new Random();  for (int i = 0; i < a.length; i++) {  a[i] = rand.nextInt();  }  }  public static void main(String[] args) {  int length = 128;  int[] a = new int[length];  fillData(a);  ForkJoinPool pool = new ForkJoinPool();  pool.invoke(new SortTask(a 0 a.length - 1));  if (isSorted(a)) {  System.out.println('Sorting Done Successfully');  } else {  System.out.println('Sorting Not Done');  }  } } 
Python3
import numpy as np import multiprocessing as mp import time def insertion_sort(arr): n = len(arr) for i in range(1 n): key = arr[i] j = i - 1 while j >= 0 and arr[j] > key: arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key def merge(arr l mid r): n1 = mid - l + 1 n2 = r - mid L = arr[l:l + n1].copy() R = arr[mid + 1:mid + 1 + n2].copy() i = j = 0 k = l while i < n1 and j < n2: if L[i] <= R[j]: arr[k] = L[i] i += 1 else: arr[k] = R[j] j += 1 k += 1 while i < n1: arr[k] = L[i] i += 1 k += 1 while j < n2: arr[k] = R[j] j += 1 k += 1 def merge_sort(arr l r): if l < r: if r - l + 1 <= 5: insertion_sort(arr) else: mid = (l + r) // 2 p1 = mp.Process(target=merge_sort args=(arr l mid)) p2 = mp.Process(target=merge_sort args=(arr mid + 1 r)) p1.start() p2.start() p1.join() p2.join() merge(arr l mid r) def is_sorted(arr): for i in range(1 len(arr)): if arr[i] < arr[i - 1]: return False return True def fill_data(arr): np.random.seed(0) arr[:] = np.random.randint(0 1000 size=len(arr)) if __name__ == '__main__': length = 128 shm_array = mp.Array('i' length) fill_data(shm_array) start_time = time.time() merge_sort(shm_array 0 length - 1) end_time = time.time() if is_sorted(shm_array): print('Sorting Done Successfully') else: print('Sorting Not Done') print('Time taken:' end_time - start_time) 
JavaScript
// Importing required modules const { Worker isMainThread parentPort workerData } = require('worker_threads'); // Function to merge sorted subarrays function merge(a low mid high) {  let temp = new Array(high - low + 1);  let i = low j = mid + 1 k = 0;  while (i <= mid && j <= high) {  if (a[i] <= a[j]) {  temp[k++] = a[i++];  } else {  temp[k++] = a[j++];  }  }  while (i <= mid) {  temp[k++] = a[i++];  }  while (j <= high) {  temp[k++] = a[j++];  }  for (let p = 0; p < temp.length; p++) {  a[low + p] = temp[p];  } } // Function to check if array is sorted function isSorted(a) {  for (let i = 0; i < a.length - 1; i++) {  if (a[i] > a[i + 1]) {  return false;  }  }  return true; } // Function to fill array with random numbers function fillData(a) {  for (let i = 0; i < a.length; i++) {  a[i] = Math.floor(Math.random() * 1000);  } } // Function to sort the array using merge sort function sortArray(a low high) {  if (high - low <= 5) {  a.sort((a b) => a - b);  } else {  let mid = low + Math.floor((high - low) / 2);  sortArray(a low mid);  sortArray(a mid + 1 high);  merge(a low mid high);  } } // Main function function main() {  let length = 128;  let a = new Array(length);  fillData(a);  sortArray(a 0 a.length - 1);  if (isSorted(a)) {  console.log('Sorting Done Successfully');  } else {  console.log('Sorting Not Done');  } } main(); 

Sortir: 
 



Sorting Done Successfully  

Complexité temporelle : O (N log N)

Espace auxiliaire : O(N)


Améliorations des performances ?  
Essayez de chronométrer le code et comparez ses performances avec le code séquentiel traditionnel. Vous seriez surpris de savoir que les performances du tri séquentiel sont meilleures ! 
Lorsque, par exemple, l'enfant de gauche accède au tableau de gauche, le tableau est chargé dans le cache d'un processeur. Désormais, lorsque l'on accède au tableau de droite (en raison d'accès simultanés), il y a un échec de cache puisque le cache est rempli avec le segment de gauche, puis le segment de droite est copié dans la mémoire cache. Ce processus de va-et-vient se poursuit et dégrade les performances à un tel niveau qu'il fonctionne moins bien que le code séquentiel.
Il existe des moyens de réduire les échecs de cache en contrôlant le flux de travail du code. Mais ils ne peuvent pas être complètement évités !