logo

Rechercher si une expression a des parenthèses en double ou non

Étant donné une expression équilibrée, recherchez si elle contient ou non des parenthèses en double. Un ensemble de parenthèses est en double si la même sous-expression est entourée de plusieurs parenthèses. 

ouvrir le menu des paramètres

Exemples :  



    Below expressions have duplicate parenthesis -      
((a+b)+((c+d)))
The subexpression 'c+d' is surrounded by two
pairs of brackets.

(((a+(b)))+(c+d))
The subexpression 'a+(b)' is surrounded by two
pairs of brackets.

(((a+(b))+c+d))
The whole expression is surrounded by two
pairs of brackets.

((a+(b))+(c+d))
(b) and ((a+(b)) is surrounded by two
pairs of brackets but it will not be counted as duplicate.

Below expressions don't have any duplicate parenthesis -
((a+b)+(c+d))
No subexpression is surrounded by duplicate
brackets.

On peut supposer que l’expression donnée est valide et qu’aucun espace blanc n’est présent. 

L'idée est d'utiliser la pile. Parcourez l'expression donnée et pour chaque caractère de l'expression si le caractère est une parenthèse ouverte '(' ou l'un des opérateurs ou opérandes, poussez-le vers le haut de la pile. Si le caractère est une parenthèse fermée ')', extrayez les caractères de la pile jusqu'à ce que la parenthèse ouverte correspondante '(' soit trouvée et un compteur est utilisé dont la valeur est incrémentée pour chaque caractère rencontré jusqu'à ce que la parenthèse ouvrante '(' soit trouvée. Si le nombre de caractères rencontrés entre l'ouverture et la fermeture La paire de parenthèses qui est égale à la valeur du compteur est inférieure à 1, alors une paire de parenthèses en double est trouvée, sinon il n'y a pas d'occurrence de paires de parenthèses redondantes. Par exemple (((a+b))+c) a des crochets en double autour de « a+b ». Lorsque le deuxième ')' après a+b est rencontré, la pile contient '(('. Puisque le haut de la pile est un crochet ouvrant, on peut en conclure qu'il y a des doublons parenthèses.

Vous trouverez ci-dessous la mise en œuvre de l'idée ci-dessus : 



C++
// C++ program to find duplicate parenthesis in a // balanced expression #include    using namespace std; // Function to find duplicate parenthesis in a // balanced expression bool findDuplicateparenthesis(string str) {  // create a stack of characters  stack<char> Stack;  // Iterate through the given expression  for (char ch : str)  {  // if current character is close parenthesis ')'  if (ch == ')')  {  // pop character from the stack  char top = Stack.top();  Stack.pop();  // stores the number of characters between a   // closing and opening parenthesis  // if this count is less than or equal to 1  // then the brackets are redundant else not  int elementsInside = 0;  while (top != '(')  {  elementsInside++;  top = Stack.top();  Stack.pop();  }  if(elementsInside < 1) {  return 1;  }  }  // push open parenthesis '(' operators and  // operands to stack  else  Stack.push(ch);  }  // No duplicates found  return false; } // Driver code int main() {  // input balanced expression  string str = '(((a+(b))+(c+d)))';  if (findDuplicateparenthesis(str))  cout << 'Duplicate Found ';  else  cout << 'No Duplicates Found ';  return 0; } 
Java
import java.util.Stack; // Java program to find duplicate parenthesis in a  // balanced expression  public class GFG { // Function to find duplicate parenthesis in a  // balanced expression   static boolean findDuplicateparenthesis(String s) {  // create a stack of characters   Stack<Character> Stack = new Stack<>();  // Iterate through the given expression   char[] str = s.toCharArray();  for (char ch : str) {  // if current character is close parenthesis ')'   if (ch == ')') {  // pop character from the stack   char top = Stack.peek();  Stack.pop();  // stores the number of characters between a   // closing and opening parenthesis   // if this count is less than or equal to 1   // then the brackets are redundant else not   int elementsInside = 0;  while (top != '(') {  elementsInside++;  top = Stack.peek();  Stack.pop();  }  if (elementsInside < 1) {  return true;  }  } // push open parenthesis '(' operators and   // operands to stack   else {  Stack.push(ch);  }  }  // No duplicates found   return false;  } // Driver code  public static void main(String[] args) {  // input balanced expression   String str = '(((a+(b))+(c+d)))';  if (findDuplicateparenthesis(str)) {  System.out.println('Duplicate Found ');  } else {  System.out.println('No Duplicates Found ');  }  } } 
Python
# Python3 program to find duplicate  # parenthesis in a balanced expression  # Function to find duplicate parenthesis  # in a balanced expression  def findDuplicateparenthesis(string): # create a stack of characters  Stack = [] # Iterate through the given expression  for ch in string: # if current character is  # close parenthesis ')'  if ch == ')': # pop character from the stack  top = Stack.pop() # stores the number of characters between  # a closing and opening parenthesis  # if this count is less than or equal to 1  # then the brackets are redundant else not  elementsInside = 0 while top != '(': elementsInside += 1 top = Stack.pop() if elementsInside < 1: return True # push open parenthesis '(' operators  # and operands to stack  else: Stack.append(ch) # No duplicates found  return False # Driver Code if __name__ == '__main__': # input balanced expression  string = '(((a+(b))+(c+d)))' if findDuplicateparenthesis(string) == True: print('Duplicate Found') else: print('No Duplicates Found') # This code is contributed by Rituraj Jain 
C#
// C# program to find duplicate parenthesis  // in a balanced expression  using System; using System.Collections.Generic; class GFG  { // Function to find duplicate parenthesis  // in a balanced expression  static Boolean findDuplicateparenthesis(String s)  {  // create a stack of characters   Stack<char> Stack = new Stack<char>();  // Iterate through the given expression   char[] str = s.ToCharArray();  foreach (char ch in str)   {  // if current character is   // close parenthesis ')'   if (ch == ')')   {  // pop character from the stack   char top = Stack.Peek();  Stack.Pop();  // stores the number of characters between  // a closing and opening parenthesis   // if this count is less than or equal to 1   // then the brackets are redundant else not   int elementsInside = 0;  while (top != '(')   {  elementsInside++;  top = Stack.Peek();  Stack.Pop();  }  if (elementsInside < 1)   {  return true;  }  }     // push open parenthesis '('   // operators and operands to stack   else   {  Stack.Push(ch);  }  }  // No duplicates found   return false; } // Driver code  public static void Main(String[] args) {  // input balanced expression   String str = '(((a+(b))+(c+d)))';  if (findDuplicateparenthesis(str))  {  Console.WriteLine('Duplicate Found ');  }   else   {  Console.WriteLine('No Duplicates Found ');  } } } // This code is contributed by 29AjayKumar 
JavaScript
// JavaScript program to find duplicate parentheses in a balanced expression function findDuplicateParenthesis(s) {  let stack = [];  // Iterate through the given expression  for (let ch of s) {    // If current character is a closing parenthesis ')'  if (ch === ')') {  let top = stack.pop();    // Count the number of elements  // inside the parentheses  let elementsInside = 0;  while (top !== '(') {  elementsInside++;  top = stack.pop();  }    // If there's nothing or only one element   // inside it's redundant  if (elementsInside < 1) {  return true;  }  }   // Push open parenthesis '(' operators and operands to stack  else {  stack.push(ch);  }  }  // No duplicates found  return false; } // Driver code let str = '(((a+(b))+(c+d)))'; if (findDuplicateParenthesis(str)) {  console.log('Duplicate Found'); } else {  console.log('No Duplicates Found'); } // This code is contributed by rag2127 

Sortir
Duplicate Found 

Sortir:  

Duplicate Found

Complexité temporelle de la solution ci-dessus est O(n). 

Espace auxiliaire utilisé par le programme est O(n).