Étant donné une expression équilibrée, recherchez si elle contient ou non des parenthèses en double. Un ensemble de parenthèses est en double si la même sous-expression est entourée de plusieurs parenthèses.
ouvrir le menu des paramètres
Exemples :
Below expressions have duplicate parenthesis -
((a+b)+((c+d)))
The subexpression 'c+d' is surrounded by two
pairs of brackets.
(((a+(b)))+(c+d))
The subexpression 'a+(b)' is surrounded by two
pairs of brackets.
(((a+(b))+c+d))
The whole expression is surrounded by two
pairs of brackets.
((a+(b))+(c+d))
(b) and ((a+(b)) is surrounded by two
pairs of brackets but it will not be counted as duplicate.
Below expressions don't have any duplicate parenthesis -
((a+b)+(c+d))
No subexpression is surrounded by duplicate
brackets.
On peut supposer que l’expression donnée est valide et qu’aucun espace blanc n’est présent.
L'idée est d'utiliser la pile. Parcourez l'expression donnée et pour chaque caractère de l'expression si le caractère est une parenthèse ouverte '(' ou l'un des opérateurs ou opérandes, poussez-le vers le haut de la pile. Si le caractère est une parenthèse fermée ')', extrayez les caractères de la pile jusqu'à ce que la parenthèse ouverte correspondante '(' soit trouvée et un compteur est utilisé dont la valeur est incrémentée pour chaque caractère rencontré jusqu'à ce que la parenthèse ouvrante '(' soit trouvée. Si le nombre de caractères rencontrés entre l'ouverture et la fermeture La paire de parenthèses qui est égale à la valeur du compteur est inférieure à 1, alors une paire de parenthèses en double est trouvée, sinon il n'y a pas d'occurrence de paires de parenthèses redondantes. Par exemple (((a+b))+c) a des crochets en double autour de « a+b ». Lorsque le deuxième ')' après a+b est rencontré, la pile contient '(('. Puisque le haut de la pile est un crochet ouvrant, on peut en conclure qu'il y a des doublons parenthèses.
Vous trouverez ci-dessous la mise en œuvre de l'idée ci-dessus :
C++
// C++ program to find duplicate parenthesis in a // balanced expression #include using namespace std; // Function to find duplicate parenthesis in a // balanced expression bool findDuplicateparenthesis(string str) { // create a stack of characters stack<char> Stack; // Iterate through the given expression for (char ch : str) { // if current character is close parenthesis ')' if (ch == ')') { // pop character from the stack char top = Stack.top(); Stack.pop(); // stores the number of characters between a // closing and opening parenthesis // if this count is less than or equal to 1 // then the brackets are redundant else not int elementsInside = 0; while (top != '(') { elementsInside++; top = Stack.top(); Stack.pop(); } if(elementsInside < 1) { return 1; } } // push open parenthesis '(' operators and // operands to stack else Stack.push(ch); } // No duplicates found return false; } // Driver code int main() { // input balanced expression string str = '(((a+(b))+(c+d)))'; if (findDuplicateparenthesis(str)) cout << 'Duplicate Found '; else cout << 'No Duplicates Found '; return 0; }
Java import java.util.Stack; // Java program to find duplicate parenthesis in a // balanced expression public class GFG { // Function to find duplicate parenthesis in a // balanced expression static boolean findDuplicateparenthesis(String s) { // create a stack of characters Stack<Character> Stack = new Stack<>(); // Iterate through the given expression char[] str = s.toCharArray(); for (char ch : str) { // if current character is close parenthesis ')' if (ch == ')') { // pop character from the stack char top = Stack.peek(); Stack.pop(); // stores the number of characters between a // closing and opening parenthesis // if this count is less than or equal to 1 // then the brackets are redundant else not int elementsInside = 0; while (top != '(') { elementsInside++; top = Stack.peek(); Stack.pop(); } if (elementsInside < 1) { return true; } } // push open parenthesis '(' operators and // operands to stack else { Stack.push(ch); } } // No duplicates found return false; } // Driver code public static void main(String[] args) { // input balanced expression String str = '(((a+(b))+(c+d)))'; if (findDuplicateparenthesis(str)) { System.out.println('Duplicate Found '); } else { System.out.println('No Duplicates Found '); } } }
Python # Python3 program to find duplicate # parenthesis in a balanced expression # Function to find duplicate parenthesis # in a balanced expression def findDuplicateparenthesis(string): # create a stack of characters Stack = [] # Iterate through the given expression for ch in string: # if current character is # close parenthesis ')' if ch == ')': # pop character from the stack top = Stack.pop() # stores the number of characters between # a closing and opening parenthesis # if this count is less than or equal to 1 # then the brackets are redundant else not elementsInside = 0 while top != '(': elementsInside += 1 top = Stack.pop() if elementsInside < 1: return True # push open parenthesis '(' operators # and operands to stack else: Stack.append(ch) # No duplicates found return False # Driver Code if __name__ == '__main__': # input balanced expression string = '(((a+(b))+(c+d)))' if findDuplicateparenthesis(string) == True: print('Duplicate Found') else: print('No Duplicates Found') # This code is contributed by Rituraj Jain
C# // C# program to find duplicate parenthesis // in a balanced expression using System; using System.Collections.Generic; class GFG { // Function to find duplicate parenthesis // in a balanced expression static Boolean findDuplicateparenthesis(String s) { // create a stack of characters Stack<char> Stack = new Stack<char>(); // Iterate through the given expression char[] str = s.ToCharArray(); foreach (char ch in str) { // if current character is // close parenthesis ')' if (ch == ')') { // pop character from the stack char top = Stack.Peek(); Stack.Pop(); // stores the number of characters between // a closing and opening parenthesis // if this count is less than or equal to 1 // then the brackets are redundant else not int elementsInside = 0; while (top != '(') { elementsInside++; top = Stack.Peek(); Stack.Pop(); } if (elementsInside < 1) { return true; } } // push open parenthesis '(' // operators and operands to stack else { Stack.Push(ch); } } // No duplicates found return false; } // Driver code public static void Main(String[] args) { // input balanced expression String str = '(((a+(b))+(c+d)))'; if (findDuplicateparenthesis(str)) { Console.WriteLine('Duplicate Found '); } else { Console.WriteLine('No Duplicates Found '); } } } // This code is contributed by 29AjayKumar
JavaScript // JavaScript program to find duplicate parentheses in a balanced expression function findDuplicateParenthesis(s) { let stack = []; // Iterate through the given expression for (let ch of s) { // If current character is a closing parenthesis ')' if (ch === ')') { let top = stack.pop(); // Count the number of elements // inside the parentheses let elementsInside = 0; while (top !== '(') { elementsInside++; top = stack.pop(); } // If there's nothing or only one element // inside it's redundant if (elementsInside < 1) { return true; } } // Push open parenthesis '(' operators and operands to stack else { stack.push(ch); } } // No duplicates found return false; } // Driver code let str = '(((a+(b))+(c+d)))'; if (findDuplicateParenthesis(str)) { console.log('Duplicate Found'); } else { console.log('No Duplicates Found'); } // This code is contributed by rag2127
Sortir
Duplicate Found
Sortir:
Duplicate FoundComplexité temporelle de la solution ci-dessus est O(n).
Espace auxiliaire utilisé par le programme est O(n).