logo

Taille alpha-bêta

  • L'élagage alpha-bêta est une version modifiée de l'algorithme minimax. Il s'agit d'une technique d'optimisation pour l'algorithme minimax.
  • Comme nous l'avons vu dans l'algorithme de recherche minimax, le nombre d'états de jeu qu'il doit examiner est exponentiel en profondeur de l'arbre. Puisque nous ne pouvons pas éliminer l’exposant, nous pouvons le réduire de moitié. Il existe donc une technique par laquelle, sans vérifier chaque nœud de l'arbre de jeu, nous pouvons calculer la décision minimax correcte, et cette technique s'appelle taille . Cela implique deux paramètres de seuil Alpha et Beta pour une expansion future, c'est pourquoi on l'appelle taille alpha-bêta . On l'appelle aussi comme Algorithme alpha-bêta .
  • La taille alpha-bêta peut être appliquée à n’importe quelle profondeur d’un arbre, et parfois elle taille non seulement les feuilles de l’arbre mais également un sous-arbre entier.
  • Les deux paramètres peuvent être définis comme :
      Alpha:Le meilleur choix (de la plus haute valeur) que nous ayons trouvé jusqu’à présent à tout moment du parcours de Maximizer. La valeur initiale de alpha est -∞ .
  • Bêta:Le meilleur choix (de valeur la plus faible) que nous ayons trouvé jusqu’à présent à tout moment du parcours de Minimizer. La valeur initiale de bêta est +∞ .
  • L'élagage Alpha-bêta vers un algorithme minimax standard renvoie le même mouvement que l'algorithme standard, mais il supprime tous les nœuds qui n'affectent pas vraiment la décision finale mais ralentissent l'algorithme. Par conséquent, en élaguant ces nœuds, cela rend l’algorithme rapide.

Remarque : Pour mieux comprendre ce sujet, veuillez étudier l'algorithme minimax.

Condition pour la taille Alpha-bêta :

La principale condition requise pour la taille alpha-bêta est :

 α>=β 

Points clés concernant l’élagage alpha-bêta :

  • Le lecteur Max mettra uniquement à jour la valeur alpha.
  • Le lecteur Min ne mettra à jour que la valeur de la version bêta.
  • Lors du retour en arrière de l'arborescence, les valeurs des nœuds seront transmises aux nœuds supérieurs au lieu des valeurs alpha et bêta.
  • Nous transmettrons uniquement les valeurs alpha et bêta aux nœuds enfants.

Pseudo-code pour l'élagage alpha-bêta :

 function minimax(node, depth, alpha, beta, maximizingPlayer) is if depth ==0 or node is a terminal node then return static evaluation of node if MaximizingPlayer then // for Maximizer Player maxEva= -infinity for each child of node do eva= minimax(child, depth-1, alpha, beta, False) maxEva= max(maxEva, eva) alpha= max(alpha, maxEva) if beta<=alpha break return maxeva else for minimizer player mineva="+infinity" each child of node do eva="minimax(child," depth-1, alpha, beta, true) eva) beta="min(beta," if beta<="alpha" < pre> <h2>Working of Alpha-Beta Pruning:</h2> <p>Let&apos;s take an example of two-player search tree to understand the working of Alpha-beta pruning</p> <p> <strong>Step 1:</strong> At the first step the, Max player will start first move from node A where &#x3B1;= -&#x221E; and &#x3B2;= +&#x221E;, these value of alpha and beta passed down to node B where again &#x3B1;= -&#x221E; and &#x3B2;= +&#x221E;, and Node B passes the same value to its child D.</p> <img src="//techcodeview.com/img/artificial-intelligence/75/alpha-beta-pruning.webp" alt="Alpha-Beta Pruning"> <p> <strong>Step 2:</strong> At Node D, the value of &#x3B1; will be calculated as its turn for Max. The value of &#x3B1; is compared with firstly 2 and then 3, and the max (2, 3) = 3 will be the value of &#x3B1; at node D and node value will also 3.</p> <p> <strong>Step 3:</strong> Now algorithm backtrack to node B, where the value of &#x3B2; will change as this is a turn of Min, Now &#x3B2;= +&#x221E;, will compare with the available subsequent nodes value, i.e. min (&#x221E;, 3) = 3, hence at node B now &#x3B1;= -&#x221E;, and &#x3B2;= 3.</p> <img src="//techcodeview.com/img/artificial-intelligence/75/alpha-beta-pruning-2.webp" alt="Alpha-Beta Pruning"> <p>In the next step, algorithm traverse the next successor of Node B which is node E, and the values of &#x3B1;= -&#x221E;, and &#x3B2;= 3 will also be passed.</p> <p> <strong>Step 4:</strong> At node E, Max will take its turn, and the value of alpha will change. The current value of alpha will be compared with 5, so max (-&#x221E;, 5) = 5, hence at node E &#x3B1;= 5 and &#x3B2;= 3, where &#x3B1;&gt;=&#x3B2;, so the right successor of E will be pruned, and algorithm will not traverse it, and the value at node E will be 5. </p> <img src="//techcodeview.com/img/artificial-intelligence/75/alpha-beta-pruning-3.webp" alt="Alpha-Beta Pruning"> <p> <strong>Step 5:</strong> At next step, algorithm again backtrack the tree, from node B to node A. At node A, the value of alpha will be changed the maximum available value is 3 as max (-&#x221E;, 3)= 3, and &#x3B2;= +&#x221E;, these two values now passes to right successor of A which is Node C.</p> <p>At node C, &#x3B1;=3 and &#x3B2;= +&#x221E;, and the same values will be passed on to node F.</p> <p> <strong>Step 6:</strong> At node F, again the value of &#x3B1; will be compared with left child which is 0, and max(3,0)= 3, and then compared with right child which is 1, and max(3,1)= 3 still &#x3B1; remains 3, but the node value of F will become 1. </p> <img src="//techcodeview.com/img/artificial-intelligence/75/alpha-beta-pruning-4.webp" alt="Alpha-Beta Pruning"> <p> <strong>Step 7:</strong> Node F returns the node value 1 to node C, at C &#x3B1;= 3 and &#x3B2;= +&#x221E;, here the value of beta will be changed, it will compare with 1 so min (&#x221E;, 1) = 1. Now at C, &#x3B1;=3 and &#x3B2;= 1, and again it satisfies the condition &#x3B1;&gt;=&#x3B2;, so the next child of C which is G will be pruned, and the algorithm will not compute the entire sub-tree G.</p> <img src="//techcodeview.com/img/artificial-intelligence/75/alpha-beta-pruning-5.webp" alt="Alpha-Beta Pruning"> <p> <strong>Step 8:</strong> C now returns the value of 1 to A here the best value for A is max (3, 1) = 3. Following is the final game tree which is the showing the nodes which are computed and nodes which has never computed. Hence the optimal value for the maximizer is 3 for this example. </p> <img src="//techcodeview.com/img/artificial-intelligence/75/alpha-beta-pruning-6.webp" alt="Alpha-Beta Pruning"> <h2>Move Ordering in Alpha-Beta pruning: </h2> <p>The effectiveness of alpha-beta pruning is highly dependent on the order in which each node is examined. Move order is an important aspect of alpha-beta pruning.</p> <p>It can be of two types:</p> <ul> <tr><td>Worst ordering:</td> In some cases, alpha-beta pruning algorithm does not prune any of the leaves of the tree, and works exactly as minimax algorithm. In this case, it also consumes more time because of alpha-beta factors, such a move of pruning is called worst ordering. In this case, the best move occurs on the right side of the tree. The time complexity for such an order is O(b<sup>m</sup>). </tr><tr><td>Ideal ordering:</td> The ideal ordering for alpha-beta pruning occurs when lots of pruning happens in the tree, and best moves occur at the left side of the tree. We apply DFS hence it first search left of the tree and go deep twice as minimax algorithm in the same amount of time. Complexity in ideal ordering is O(b<sup>m/2</sup>). </tr></ul> <h2>Rules to find good ordering: </h2> <p>Following are some rules to find good ordering in alpha-beta pruning:</p> <ul> <li>Occur the best move from the shallowest node.</li> <li>Order the nodes in the tree such that the best nodes are checked first. </li> <li>Use domain knowledge while finding the best move. Ex: for Chess, try order: captures first, then threats, then forward moves, backward moves.</li> <li>We can bookkeep the states, as there is a possibility that states may repeat.</li> </ul> <hr></=alpha>