logo

Vérifiez si deux cercles donnés se touchent ou se croisent

Essayez-le sur GfG Practice ' title= #practiceLinkDiv { display : aucun !important; }

Il y a deux cercles A et B avec leurs centres C1(x1 et1) et C2(x2 y2) et rayon R1 et R2 . La tâche consiste à vérifier que les deux cercles A et B se touchent ou non.

Exemples :   

Oops

Saisir : C1 = (3 4)
        C2 = (14 18)
        R1 = 5 R2 = 8
Sortir : Les cercles ne se touchent pas.



Saisir : C1 = (2 3)
        C2 = (15 28)
        R1 = 12 R2 = 10
Sortir : Les cercles se croisent.

Saisir : C1 = (-10 8)
        C2 = (14-24)
        R1 = 30 R2 = 10

Pratique recommandéeVérifiez si deux cercles donnés se touchentEssayez-le !

Approche:
La distance entre les centres C1 et C2 est calculée comme suit

 C1C2 = carré((x1 - x2) 2 + (y1 - y2) 2 ).

Trois conditions se présentent.

  1. Si C1C2<= R1 - R2: Le cercle B est à l’intérieur de A.
  2. Si C1C2<= R2 - R1: Le cercle A est à l’intérieur de B.
  3. Si C1C2< R1 + R2: Les cercles se croisent.
  4. Si C1C2 == R1 + R2 : Les cercles A et B sont en contact.
  5. Sinon Les cercles A et B ne se chevauchent pas

Vous trouverez ci-dessous la mise en œuvre de l’approche ci-dessus : 

C++
// C++ program to check if two // circles touch each other or not. #include    using namespace std; int circle(int x1 int y1 int x2 int y2 int r1 int r2) {  double d = sqrt((x1 - x2) * (x1 - x2)  + (y1 - y2) * (y1 - y2));  if (d <= r1 - r2) {  cout << 'Circle B is inside A';  }  else if (d <= r2 - r1) {  cout << 'Circle A is inside B';  }  else if (d < r1 + r2) {  cout << 'Circle intersect to each other';  }  else if (d == r1 + r2) {  cout << 'Circle touch to each other';  }  else {  cout << 'Circle not touch to each other';  } } // Driver code int main() {  int x1 = -10 y1 = 8;  int x2 = 14 y2 = -24;  int r1 = 30 r2 = 10;  circle(x1 y1 x2 y2 r1 r2);  return 0; } 
Java
// Java program to check if two // circles touch each other or not. import java.io.*; class GFG {  static void circle(int x1 int y1 int x2 int y2  int r1 int r2)  {  double d = Math.sqrt((x1 - x2) * (x1 - x2)  + (y1 - y2) * (y1 - y2));  if (d <= r1 - r2) {  System.out.println('Circle B is inside A');  }  else if (d <= r2 - r1) {  System.out.println('Circle A is inside B');  }  else if (d < r1 + r2) {  System.out.println('Circle intersect'  + ' to each other');  }  else if (d == r1 + r2) {  System.out.println('Circle touch to'  + ' each other');  }  else {  System.out.println('Circle not touch'  + ' to each other');  }  }  // Driver code  public static void main(String[] args)  {  int x1 = -10 y1 = 8;  int x2 = 14 y2 = -24;  int r1 = 30 r2 = 10;  circle(x1 y1 x2 y2 r1 r2);  } } // This article is contributed by vt_m. 
Python
# Python program to check if two # circles touch each other or not. import math # Function to check if two circles touch each other def circle(x1 y1 x2 y2 r1 r2): d = math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)) if(d <= r1 - r2): print('Circle B is inside A') elif(d <= r2 - r1): print('Circle A is inside B') elif(d < r1 + r2): print('Circle intersect to each other') elif(d == r1 + r2): print('Circle touch to each other') else: print('Circle not touch to each other') # Driver code x1 y1 = -10 8 x2 y2 = 14 -24 r1 r2 = 30 10 # Function call circle(x1 y1 x2 y2 r1 r2) # This code is contributed by Aman Kumar 
C#
// C# program to check if two // circles touch each other or not. using System; class GFG {  static void circle(int x1 int y1 int x2 int y2  int r1 int r2)  {  double d = Math.Sqrt((x1 - x2) * (x1 - x2)  + (y1 - y2) * (y1 - y2));  if (d <= r1 - r2) {  Console.Write('Circle B is inside A');  }  else if (d <= r2 - r1) {  Console.Write('Circle A is inside B');  }  else if (d < r1 + r2) {  Console.Write('Circle intersect'  + ' to each other');  }  else if (d == r1 + r2) {  Console.Write('Circle touch to'  + ' each other');  }  else {  Console.Write('Circle not touch'  + ' to each other');  }  }  // Driver code  public static void Main(String[] args)  {  int x1 = -10 y1 = 8;  int x2 = 14 y2 = -24;  int r1 = 30 r2 = 10;  circle(x1 y1 x2 y2 r1 r2);  } } // This article is contributed by Pushpesh Raj. 
JavaScript
// JavaScript program to check if two circles touch each other or not. function circle(x1 y1 x2 y2 r1 r2) {  var d = Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));  if (d <= r1 - r2) {  console.log('Circle B is inside A');  } else if (d <= r2 - r1) {  console.log('Circle A is inside B');  } else if (d < r1 + r2) {  console.log('Circle intersect to each other');  } else if (d === r1 + r2) {  console.log('Circle touch to each other');  } else {  console.log('Circle not touch to each other');  } } // Driver code var x1 = -10 y1 = 8; var x2 = 14 y2 = -24; var r1 = 30 r2 = 10; circle(x1 y1 x2 y2 r1 r2); // this code is contributed by devendra 

Sortir
Circle touch to each other

Complexité temporelle : O(log(n)) car vous utilisez la fonction sqrt intégrée 
Espace auxiliaire : O(1)

Le plus beau des sourires


Cet article est rédigé par Aarti_Rathi et Dharmendra Kumar .

Créer un quiz