logo

Chemin avec valeur moyenne maximale

Étant donné une matrice carrée de taille N*N où chaque cellule est associée à un coût spécifique. Un chemin est défini comme une séquence spécifique de cellules qui commence à partir de la cellule en haut à gauche et se déplace uniquement vers la droite ou vers le bas et se termine dans la cellule en bas à droite. Nous voulons trouver un chemin avec la moyenne maximale sur tous les chemins existants. La moyenne est calculée comme le coût total divisé par le nombre de cellules visitées sur le chemin. 

Exemples :  

Input : Matrix = [1 2 3  
4 5 6
7 8 9]
Output : 5.8
Path with maximum average is 1 -> 4 -> 7 -> 8 -> 9
Sum of the path is 29 and average is 29/5 = 5.8

Une observation intéressante est que les seuls mouvements autorisés sont vers le bas et vers la droite, nous avons besoin de N-1 mouvements vers le bas et de N-1 mouvements vers la droite pour atteindre la destination (en bas à droite). Ainsi, tout chemin allant du coin supérieur gauche au coin inférieur droit nécessite 2N - 1 cellules. Dans moyenne valeur, le dénominateur est fixe et nous devons simplement maximiser le numérateur. Par conséquent, nous devons essentiellement trouver le chemin de la somme maximale. Le calcul de la somme maximale du chemin est un problème de programmation dynamique classique si dp[i][j] représente la somme maximale jusqu'à la cellule (i j) à partir de (0 0), alors à chaque cellule (i j) nous mettons à jour dp[i][j] comme ci-dessous



for all i 1 <= i <= N  
dp[i][0] = dp[i-1][0] + cost[i][0];
for all j 1 <= j <= N
dp[0][j] = dp[0][j-1] + cost[0][j];
otherwise
dp[i][j] = max(dp[i-1][j] dp[i][j-1]) + cost[i][j];

Une fois que nous aurons obtenu la somme maximale de tous les chemins, nous diviserons cette somme par (2N - 1) et nous obtiendrons notre moyenne maximale. 

Mise en œuvre:

C++
//C/C++ program to find maximum average cost path #include    using namespace std; // Maximum number of rows and/or columns const int M = 100; // method returns maximum average of all path of // cost matrix double maxAverageOfPath(int cost[M][M] int N) {  int dp[N+1][N+1];  dp[0][0] = cost[0][0];  /* Initialize first column of total cost(dp) array */  for (int i = 1; i < N; i++)  dp[i][0] = dp[i-1][0] + cost[i][0];  /* Initialize first row of dp array */  for (int j = 1; j < N; j++)  dp[0][j] = dp[0][j-1] + cost[0][j];  /* Construct rest of the dp array */  for (int i = 1; i < N; i++)  for (int j = 1; j <= N; j++)  dp[i][j] = max(dp[i-1][j]  dp[i][j-1]) + cost[i][j];  // divide maximum sum by constant path  // length : (2N - 1) for getting average  return (double)dp[N-1][N-1] / (2*N-1); } /* Driver program to test above functions */ int main() {  int cost[M][M] = { {1 2 3}  {6 5 4}  {7 3 9}  };  printf('%f' maxAverageOfPath(cost 3));  return 0; } 
Java
// JAVA Code for Path with maximum average // value import java.io.*; class GFG {    // method returns maximum average of all  // path of cost matrix  public static double maxAverageOfPath(int cost[][]  int N)  {  int dp[][] = new int[N+1][N+1];  dp[0][0] = cost[0][0];    /* Initialize first column of total cost(dp)  array */  for (int i = 1; i < N; i++)  dp[i][0] = dp[i-1][0] + cost[i][0];    /* Initialize first row of dp array */  for (int j = 1; j < N; j++)  dp[0][j] = dp[0][j-1] + cost[0][j];    /* Construct rest of the dp array */  for (int i = 1; i < N; i++)  for (int j = 1; j < N; j++)  dp[i][j] = Math.max(dp[i-1][j]  dp[i][j-1]) + cost[i][j];    // divide maximum sum by constant path  // length : (2N - 1) for getting average  return (double)dp[N-1][N-1] / (2 * N - 1);  }    /* Driver program to test above function */  public static void main(String[] args)   {  int cost[][] = {{1 2 3}  {6 5 4}  {7 3 9}};    System.out.println(maxAverageOfPath(cost 3));  } } // This code is contributed by Arnav Kr. Mandal. 
C#
// C# Code for Path with maximum average // value using System; class GFG {    // method returns maximum average of all  // path of cost matrix  public static double maxAverageOfPath(int []cost  int N)  {  int []dp = new int[N+1N+1];  dp[00] = cost[00];    /* Initialize first column of total cost(dp)  array */  for (int i = 1; i < N; i++)  dp[i 0] = dp[i - 10] + cost[i 0];    /* Initialize first row of dp array */  for (int j = 1; j < N; j++)  dp[0 j] = dp[0j - 1] + cost[0 j];    /* Construct rest of the dp array */  for (int i = 1; i < N; i++)  for (int j = 1; j < N; j++)  dp[i j] = Math.Max(dp[i - 1 j]  dp[ij - 1]) + cost[i j];    // divide maximum sum by constant path  // length : (2N - 1) for getting average  return (double)dp[N - 1 N - 1] / (2 * N - 1);  }    // Driver Code  public static void Main()   {  int []cost = {{1 2 3}  {6 5 4}  {7 3 9}};    Console.Write(maxAverageOfPath(cost 3));  } } // This code is contributed by nitin mittal. 
JavaScript
<script>  // JavaScript Code for Path with maximum average value    // method returns maximum average of all  // path of cost matrix  function maxAverageOfPath(cost N)  {  let dp = new Array(N+1);  for (let i = 0; i < N + 1; i++)  {  dp[i] = new Array(N + 1);  for (let j = 0; j < N + 1; j++)  {  dp[i][j] = 0;  }  }  dp[0][0] = cost[0][0];    /* Initialize first column of total cost(dp)  array */  for (let i = 1; i < N; i++)  dp[i][0] = dp[i-1][0] + cost[i][0];    /* Initialize first row of dp array */  for (let j = 1; j < N; j++)  dp[0][j] = dp[0][j-1] + cost[0][j];    /* Construct rest of the dp array */  for (let i = 1; i < N; i++)  for (let j = 1; j < N; j++)  dp[i][j] = Math.max(dp[i-1][j]  dp[i][j-1]) + cost[i][j];    // divide maximum sum by constant path  // length : (2N - 1) for getting average  return dp[N-1][N-1] / (2 * N - 1);  }    let cost = [[1 2 3]  [6 5 4]  [7 3 9]];    document.write(maxAverageOfPath(cost 3)); </script> 
PHP
 // Php program to find maximum average cost path  // method returns maximum average of all path of  // cost matrix  function maxAverageOfPath($cost $N) { $dp = array(array()) ; $dp[0][0] = $cost[0][0]; /* Initialize first column of total cost(dp) array */ for ($i = 1; $i < $N; $i++) $dp[$i][0] = $dp[$i-1][0] + $cost[$i][0]; /* Initialize first row of dp array */ for ($j = 1; $j < $N; $j++) $dp[0][$j] = $dp[0][$j-1] + $cost[0][$j]; /* Construct rest of the dp array */ for ($i = 1; $i < $N; $i++) { for ($j = 1; $j <= $N; $j++) $dp[$i][$j] = max($dp[$i-1][$j]$dp[$i][$j-1]) + $cost[$i][$j]; } // divide maximum sum by constant path  // length : (2N - 1) for getting average  return $dp[$N-1][$N-1] / (2*$N-1); } // Driver code $cost = array(array(1 2 3) array( 6 5 4) array(7 3 9) ) ; echo maxAverageOfPath($cost 3) ; // This code is contributed by Ryuga ?> 
Python3
# Python program to find  # maximum average cost path # Maximum number of rows  # and/or columns M = 100 # method returns maximum average of  # all path of cost matrix def maxAverageOfPath(cost N): dp = [[0 for i in range(N + 1)] for j in range(N + 1)] dp[0][0] = cost[0][0] # Initialize first column of total cost(dp) array for i in range(1 N): dp[i][0] = dp[i - 1][0] + cost[i][0] # Initialize first row of dp array for j in range(1 N): dp[0][j] = dp[0][j - 1] + cost[0][j] # Construct rest of the dp array for i in range(1 N): for j in range(1 N): dp[i][j] = max(dp[i - 1][j] dp[i][j - 1]) + cost[i][j] # divide maximum sum by constant path # length : (2N - 1) for getting average return dp[N - 1][N - 1] / (2 * N - 1) # Driver program to test above function cost = [[1 2 3] [6 5 4] [7 3 9]] print(maxAverageOfPath(cost 3)) # This code is contributed by Soumen Ghosh. 

Sortir
5.200000 

Complexité temporelle : SUR2) pour l'entrée N donnée
Espace auxiliaire : SUR2) pour une entrée N donnée.

Méthode - 2 : Sans utiliser d'espace supplémentaire N*N 

Nous pouvons utiliser le tableau des coûts d'entrée comme dp pour stocker les ans. donc de cette façon, nous n’avons pas besoin d’un tableau dp supplémentaire ni d’espace supplémentaire.

Une observation est que les seuls mouvements autorisés sont vers le bas et vers la droite. Nous avons besoin de N-1 mouvements vers le bas et de N-1 mouvements vers la droite pour atteindre la destination (en bas à droite). Ainsi, tout chemin allant du coin supérieur gauche au coin inférieur droit nécessite 2N - 1 cellule. Dans moyenne valeur, le dénominateur est fixe et nous devons simplement maximiser le numérateur. Par conséquent, nous devons essentiellement trouver le chemin de la somme maximale. Le calcul de la somme maximale du chemin est un problème de programmation dynamique classique. De plus, nous n'avons besoin d'aucune valeur de coût [i] [j] précédente après le calcul de dp [i] [j] afin que nous puissions modifier la valeur de coût [i] [j] de telle sorte que nous n'ayons pas besoin d'espace supplémentaire pour dp [i] [j].

for all i 1 <= i < N  
cost[i][0] = cost[i-1][0] + cost[i][0];
for all j 1 <= j < N
cost[0][j] = cost[0][j-1] + cost[0][j];
otherwise
cost[i][j] = max(cost[i-1][j] cost[i][j-1]) + cost[i][j];

Vous trouverez ci-dessous la mise en œuvre de l’approche ci-dessus :

C++
// C++ program to find maximum average cost path #include    using namespace std; // Method returns maximum average of all path of cost matrix double maxAverageOfPath(vector<vector<int>>cost) {  int N = cost.size();  // Initialize first column of total cost array  for (int i = 1; i < N; i++)  cost[i][0] = cost[i][0] + cost[i - 1][0];  // Initialize first row of array  for (int j = 1; j < N; j++)  cost[0][j] = cost[0][j - 1] + cost[0][j];  // Construct rest of the array  for (int i = 1; i < N; i++)  for (int j = 1; j <= N; j++)  cost[i][j] = max(cost[i - 1][j] cost[i][j - 1]) + cost[i][j];  // divide maximum sum by constant path  // length : (2N - 1) for getting average  return (double)cost[N - 1][N - 1] / (2 * N - 1); } // Driver program int main() {  vector<vector<int>> cost = {{1 2 3}  {6 5 4}  {7 3 9}  };  cout << maxAverageOfPath(cost);  return 0; } 
Java
// Java program to find maximum average cost path import java.io.*; class GFG {  // Method returns maximum average of all path of cost  // matrix  static double maxAverageOfPath(int[][] cost)  {  int N = cost.length;  // Initialize first column of total cost array  for (int i = 1; i < N; i++)  cost[i][0] = cost[i][0] + cost[i - 1][0];  // Initialize first row of array  for (int j = 1; j < N; j++)  cost[0][j] = cost[0][j - 1] + cost[0][j];  // Construct rest of the array  for (int i = 1; i < N; i++)  for (int j = 1; j < N; j++)  cost[i][j] = Math.max(cost[i - 1][j]  cost[i][j - 1])  + cost[i][j];  // divide maximum sum by constant path  // length : (2N - 1) for getting average  return (double)cost[N - 1][N - 1] / (2 * N - 1);  }  // Driver program  public static void main(String[] args)  {  int[][] cost  = { { 1 2 3 } { 6 5 4 } { 7 3 9 } };  System.out.println(maxAverageOfPath(cost));  } } // This code is contributed by karandeep1234 
C#
// C# program to find maximum average cost path using System; class GFG {  // Method returns maximum average of all path of cost  // matrix  static double maxAverageOfPath(int[ ] cost)  {  int N = cost.GetLength(0);  // Initialize first column of total cost array  for (int i = 1; i < N; i++)  cost[i 0] = cost[i 0] + cost[i - 1 0];  // Initialize first row of array  for (int j = 1; j < N; j++)  cost[0 j] = cost[0 j - 1] + cost[0 j];  // Construct rest of the array  for (int i = 1; i < N; i++)  for (int j = 1; j < N; j++)  cost[i j] = Math.Max(cost[i - 1 j]  cost[i j - 1])  + cost[i j];  // divide maximum sum by constant path  // length : (2N - 1) for getting average  return (double)cost[N - 1 N - 1] / (2 * N - 1);  }  // Driver program  static void Main(string[] args)  {  int[ ] cost  = { { 1 2 3 } { 6 5 4 } { 7 3 9 } };  Console.WriteLine(maxAverageOfPath(cost));  } } // This code is contributed by karandeep1234 
JavaScript
// Method returns maximum average of all path of cost matrix function maxAverageOfPath(cost) {  let N = cost.length;  // Initialize first column of total cost array  for (let i = 1; i < N; i++)  cost[i][0] = cost[i][0] + cost[i - 1][0];  // Initialize first row of array  for (let j = 1; j < N; j++)  cost[0][j] = cost[0][j - 1] + cost[0][j];  // Construct rest of the array  for (let i = 1; i < N; i++)  for (let j = 1; j <= N; j++)  cost[i][j] = Math.max(cost[i - 1][j] cost[i][j - 1]) + cost[i][j];  // divide maximum sum by constant path  // length : (2N - 1) for getting average  return (cost[N - 1][N - 1]) / (2.0 * N - 1); } // Driver program let cost = [[1 2 3]  [6 5 4]  [7 3 9]]; console.log(maxAverageOfPath(cost)) // This code is contributed by karandeep1234. 
Python3
# Python program to find maximum average cost path from typing import List def maxAverageOfPath(cost: List[List[int]]) -> float: N = len(cost) # Initialize first column of total cost array for i in range(1 N): cost[i][0] = cost[i][0] + cost[i - 1][0] # Initialize first row of array for j in range(1 N): cost[0][j] = cost[0][j - 1] + cost[0][j] # Construct rest of the array for i in range(1 N): for j in range(1 N): cost[i][j] = max(cost[i - 1][j] cost[i][j - 1]) + cost[i][j] # divide maximum sum by constant path # length : (2N - 1) for getting average return cost[N - 1][N - 1] / (2 * N - 1) # Driver program def main(): cost = [[1 2 3] [6 5 4] [7 3 9]] print(maxAverageOfPath(cost)) if __name__ == '__main__': main() 

Sortir
5.2 

Complexité temporelle : O(N*N)
Espace auxiliaire : O(1)