Une matrice carrée est donnée dans laquelle chaque cellule représente soit un blanc, soit un obstacle. Nous pouvons placer des miroirs en position vierge. Tous les miroirs seront situés à 45 degrés, c'est-à-dire qu'ils peuvent transférer la lumière de bas en droite s'il n'y a aucun obstacle sur leur chemin.
Dans cette question, nous devons compter combien de miroirs de ce type peuvent être placés dans une matrice carrée capable de transférer la lumière de bas en droite.
en ordre
Exemples :
Output for above example is 2. In above diagram mirror at (3 1) and (5 5) are able to send light from bottom to right so total possible mirror count is 2.
Nous pouvons résoudre ce problème en vérifiant la position de ces miroirs dans la matrice. Le miroir qui peut transférer la lumière de bas en droite n'aura aucun obstacle sur son chemin, c'est-à-dire
si un miroir est là à l'index (i j) alors
il n'y aura aucun obstacle à l'indice (k j) pour tout k i< k <= N
il n'y aura aucun obstacle à l'indice (i k) pour tout k j< k <= N
En gardant à l’esprit ces deux équations, nous pouvons trouver l’obstacle le plus à droite à chaque ligne dans une itération d’une matrice donnée et nous pouvons trouver l’obstacle le plus bas à chaque colonne dans une autre itération de la matrice donnée. Après avoir stocké ces indices dans un tableau séparé, nous pouvons vérifier pour chaque index s'il ne satisfait ou non à aucune condition d'obstacle, puis augmenter le nombre en conséquence.
Vous trouverez ci-dessous la solution implémentée sur le concept ci-dessus qui nécessite du temps O(N^2) et un espace supplémentaire O(N).
C++// C++ program to find how many mirror can transfer // light from bottom to right #include using namespace std; // method returns number of mirror which can transfer // light from bottom to right int maximumMirrorInMatrix(string mat[] int N) { // To store first obstacles horizontally (from right) // and vertically (from bottom) int horizontal[N] vertical[N]; // initialize both array as -1 signifying no obstacle memset(horizontal -1 sizeof(horizontal)); memset(vertical -1 sizeof(vertical)); // looping matrix to mark column for obstacles for (int i=0; i<N; i++) { for (int j=N-1; j>=0; j--) { if (mat[i][j] == 'B') continue; // mark rightmost column with obstacle horizontal[i] = j; break; } } // looping matrix to mark rows for obstacles for (int j=0; j<N; j++) { for (int i=N-1; i>=0; i--) { if (mat[i][j] == 'B') continue; // mark leftmost row with obstacle vertical[j] = i; break; } } int res = 0; // Initialize result // if there is not obstacle on right or below // then mirror can be placed to transfer light for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { /* if i > vertical[j] then light can from bottom if j > horizontal[i] then light can go to right */ if (i > vertical[j] && j > horizontal[i]) { /* uncomment this code to print actual mirror position also cout << i << ' ' << j << endl; */ res++; } } } return res; } // Driver code to test above method int main() { int N = 5; // B - Blank O - Obstacle string mat[N] = {'BBOBB' 'BBBBO' 'BBBBB' 'BOOBO' 'BBBOB' }; cout << maximumMirrorInMatrix(mat N) << endl; return 0; }
Java // Java program to find how many mirror can transfer // light from bottom to right import java.util.*; class GFG { // method returns number of mirror which can transfer // light from bottom to right static int maximumMirrorInMatrix(String mat[] int N) { // To store first obstacles horizontally (from right) // and vertically (from bottom) int[] horizontal = new int[N]; int[] vertical = new int[N]; // initialize both array as -1 signifying no obstacle Arrays.fill(horizontal -1); Arrays.fill(vertical -1); // looping matrix to mark column for obstacles for (int i = 0; i < N; i++) { for (int j = N - 1; j >= 0; j--) { if (mat[i].charAt(j) == 'B') { continue; } // mark rightmost column with obstacle horizontal[i] = j; break; } } // looping matrix to mark rows for obstacles for (int j = 0; j < N; j++) { for (int i = N - 1; i >= 0; i--) { if (mat[i].charAt(j) == 'B') { continue; } // mark leftmost row with obstacle vertical[j] = i; break; } } int res = 0; // Initialize result // if there is not obstacle on right or below // then mirror can be placed to transfer light for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { /* if i > vertical[j] then light can from bottom if j > horizontal[i] then light can go to right */ if (i > vertical[j] && j > horizontal[i]) { /* uncomment this code to print actual mirror position also cout << i << ' ' << j << endl; */ res++; } } } return res; } // Driver code public static void main(String[] args) { int N = 5; // B - Blank O - Obstacle String mat[] = {'BBOBB' 'BBBBO' 'BBBBB' 'BOOBO' 'BBBOB' }; System.out.println(maximumMirrorInMatrix(mat N)); } } /* This code is contributed by PrinciRaj1992 */
Python3 # Python3 program to find how many mirror can transfer # light from bottom to right # method returns number of mirror which can transfer # light from bottom to right def maximumMirrorInMatrix(mat N): # To store first obstacles horizontally (from right) # and vertically (from bottom) horizontal = [-1 for i in range(N)] vertical = [-1 for i in range(N)]; # looping matrix to mark column for obstacles for i in range(N): for j in range(N - 1 -1 -1): if (mat[i][j] == 'B'): continue; # mark rightmost column with obstacle horizontal[i] = j; break; # looping matrix to mark rows for obstacles for j in range(N): for i in range(N - 1 -1 -1): if (mat[i][j] == 'B'): continue; # mark leftmost row with obstacle vertical[j] = i; break; res = 0; # Initialize result # if there is not obstacle on right or below # then mirror can be placed to transfer light for i in range(N): for j in range(N): ''' if i > vertical[j] then light can from bottom if j > horizontal[i] then light can go to right ''' if (i > vertical[j] and j > horizontal[i]): ''' uncomment this code to print actual mirror position also''' res+=1; return res; # Driver code to test above method N = 5; # B - Blank O - Obstacle mat = ['BBOBB' 'BBBBO' 'BBBBB' 'BOOBO' 'BBBOB' ]; print(maximumMirrorInMatrix(mat N)); # This code is contributed by rutvik_56.
C# // C# program to find how many mirror can transfer // light from bottom to right using System; class GFG { // method returns number of mirror which can transfer // light from bottom to right static int maximumMirrorInMatrix(String []mat int N) { // To store first obstacles horizontally (from right) // and vertically (from bottom) int[] horizontal = new int[N]; int[] vertical = new int[N]; // initialize both array as -1 signifying no obstacle for (int i = 0; i < N; i++) { horizontal[i]=-1; vertical[i]=-1; } // looping matrix to mark column for obstacles for (int i = 0; i < N; i++) { for (int j = N - 1; j >= 0; j--) { if (mat[i][j] == 'B') { continue; } // mark rightmost column with obstacle horizontal[i] = j; break; } } // looping matrix to mark rows for obstacles for (int j = 0; j < N; j++) { for (int i = N - 1; i >= 0; i--) { if (mat[i][j] == 'B') { continue; } // mark leftmost row with obstacle vertical[j] = i; break; } } int res = 0; // Initialize result // if there is not obstacle on right or below // then mirror can be placed to transfer light for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { /* if i > vertical[j] then light can from bottom if j > horizontal[i] then light can go to right */ if (i > vertical[j] && j > horizontal[i]) { /* uncomment this code to print actual mirror position also cout << i << ' ' << j << endl; */ res++; } } } return res; } // Driver code public static void Main(String[] args) { int N = 5; // B - Blank O - Obstacle String []mat = {'BBOBB' 'BBBBO' 'BBBBB' 'BOOBO' 'BBBOB' }; Console.WriteLine(maximumMirrorInMatrix(mat N)); } } // This code is contributed by Princi Singh
JavaScript <script> // JavaScript program to find how many mirror can transfer // light from bottom to right // method returns number of mirror which can transfer // light from bottom to right function maximumMirrorInMatrix(mat N) { // To store first obstacles horizontally (from right) // and vertically (from bottom) var horizontal = Array(N).fill(-1); var vertical = Array(N).fill(-1); // looping matrix to mark column for obstacles for (var i = 0; i < N; i++) { for (var j = N - 1; j >= 0; j--) { if (mat[i][j] == 'B') { continue; } // mark rightmost column with obstacle horizontal[i] = j; break; } } // looping matrix to mark rows for obstacles for (var j = 0; j < N; j++) { for (var i = N - 1; i >= 0; i--) { if (mat[i][j] == 'B') { continue; } // mark leftmost row with obstacle vertical[j] = i; break; } } var res = 0; // Initialize result // if there is not obstacle on right or below // then mirror can be placed to transfer light for (var i = 0; i < N; i++) { for (var j = 0; j < N; j++) { /* if i > vertical[j] then light can from bottom if j > horizontal[i] then light can go to right */ if (i > vertical[j] && j > horizontal[i]) { /* uncomment this code to print actual mirror position also cout << i << ' ' << j << endl; */ res++; } } } return res; } // Driver code var N = 5; // B - Blank O - Obstacle var mat = ['BBOBB' 'BBBBO' 'BBBBB' 'BOOBO' 'BBBOB' ]; document.write(maximumMirrorInMatrix(mat N)); </script>
Sortir
2
Complexité temporelle : O(n2).
Espace auxiliaire : O(n)
tableau trié en java