Étant donné une chaîne, découvrez si la chaîne est K-Palindrome ou non. Une chaîne K-palindrome se transforme en palindrome en en supprimant au plus k caractères.
Exemples :
Input : String - abcdecba k = 1 Output : Yes String can become palindrome by removing 1 character i.e. either d or e Input : String - abcdeca K = 2 Output : Yes Can become palindrome by removing 2 characters b and e (or b and d). Input : String - acdcb K = 1 Output : No String can not become palindrome by removing only one character.
mot-clé volatile javaPratique recommandée K-Palindrome Essayez-le !
Nous avons discuté d'une solution DP dans précédent post où nous avons vu que le problème est essentiellement une variante de Modifier la distance problème. Dans cet article, une autre solution DP intéressante est discutée.
L’idée est de trouver la sous-séquence palindromique la plus longue d’une chaîne donnée. Si la différence entre la sous-séquence palindromique la plus longue et la chaîne d'origine est inférieure à k, alors la chaîne est un k-palindrome, sinon elle n'est pas un k-palindrome.
Par exemple la plus longue sous-séquence palindromique de chaîne ABCdéca est accdca (ou acéca). Les caractères qui ne contribuent pas à la sous-séquence palindromique la plus longue de la chaîne doivent être supprimés afin de créer un palindrome de chaîne. Ainsi, en supprimant b et d (ou e) de la chaîne abcdeca, cela se transformera en palindrome.
La sous-séquence palindromique la plus longue d'une chaîne peut facilement être trouvée en utilisant LCS . Voici la solution en deux étapes pour trouver la sous-séquence palindromique la plus longue utilisant LCS.
- Inversez la séquence donnée et stockez l'inverse dans un autre tableau, par exemple rev[0..n-1]
- LCS de la séquence donnée et rev[] seront la séquence palindromique la plus longue.
Vous trouverez ci-dessous la mise en œuvre de l’idée ci-dessus –
chaîne java indexofCPP
// C++ program to find if given string is K-Palindrome // or not #include using namespace std; /* Returns length of LCS for X[0..m-1] Y[0..n-1] */ int lcs( string X string Y int m int n ) { int L[m + 1][n + 1]; /* Following steps build L[m+1][n+1] in bottom up fashion. Note that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] */ for (int i = 0; i <= m; i++) { for (int j = 0; j <= n; j++) { if (i == 0 || j == 0) L[i][j] = 0; else if (X[i - 1] == Y[j - 1]) L[i][j] = L[i - 1][j - 1] + 1; else L[i][j] = max(L[i - 1][j] L[i][j - 1]); } } // L[m][n] contains length of LCS for X and Y return L[m][n]; } // find if given string is K-Palindrome or not bool isKPal(string str int k) { int n = str.length(); // Find reverse of string string revStr = str; reverse(revStr.begin() revStr.end()); // find longest palindromic subsequence of // given string int lps = lcs(str revStr n n); // If the difference between longest palindromic // subsequence and the original string is less // than equal to k then the string is k-palindrome return (n - lps <= k); } // Driver program int main() { string str = 'abcdeca'; int k = 2; isKPal(str k) ? cout << 'Yes' : cout << 'No'; return 0; }
Java // Java program to find if given // String is K-Palindrome or not import java.util.*; import java.io.*; class GFG { /* Returns length of LCS for X[0..m-1] Y[0..n-1] */ static int lcs(String X String Y int m int n) { int L[][] = new int[m + 1][n + 1]; /* Following steps build L[m+1][n+1] in bottom up fashion. Note that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] */ for (int i = 0; i <= m; i++) { for (int j = 0; j <= n; j++) { if (i == 0 || j == 0) { L[i][j] = 0; } else if (X.charAt(i - 1) == Y.charAt(j - 1)) { L[i][j] = L[i - 1][j - 1] + 1; } else { L[i][j] = Math.max(L[i - 1][j] L[i][j - 1]); } } } // L[m][n] contains length // of LCS for X and Y return L[m][n]; } // find if given String is // K-Palindrome or not static boolean isKPal(String str int k) { int n = str.length(); // Find reverse of String StringBuilder revStr = new StringBuilder(str); revStr = revStr.reverse(); // find longest palindromic // subsequence of given String int lps = lcs(str revStr.toString() n n); // If the difference between longest // palindromic subsequence and the // original String is less than equal // to k then the String is k-palindrome return (n - lps <= k); } // Driver code public static void main(String[] args) { String str = 'abcdeca'; int k = 2; if (isKPal(str k)) { System.out.println('Yes'); } else System.out.println('No'); } } // This code is contributed by Rajput-JI
Python3 # Python program to find # if given string is K-Palindrome # or not # Returns length of LCS # for X[0..m-1] Y[0..n-1] def lcs(X Y m n ): L = [[0]*(n+1) for _ in range(m+1)] # Following steps build # L[m+1][n+1] in bottom up # fashion. Note that L[i][j] # contains length of # LCS of X[0..i-1] and Y[0..j-1] for i in range(m+1): for j in range(n+1): if not i or not j: L[i][j] = 0 elif X[i - 1] == Y[j - 1]: L[i][j] = L[i - 1][j - 1] + 1 else: L[i][j] = max(L[i - 1][j] L[i][j - 1]) # L[m][n] contains length # of LCS for X and Y return L[m][n] # find if given string is # K-Palindrome or not def isKPal(string k): n = len(string) # Find reverse of string revStr = string[::-1] # find longest palindromic # subsequence of # given string lps = lcs(string revStr n n) # If the difference between # longest palindromic # subsequence and the original # string is less # than equal to k then # the string is k-palindrome return (n - lps <= k) # Driver program string = 'abcdeca' k = 2 print('Yes' if isKPal(string k) else 'No') # This code is contributed # by Ansu Kumari.
C# // C# program to find if given // String is K-Palindrome or not using System; class GFG { /* Returns length of LCS for X[0..m-1] Y[0..n-1] */ static int lcs(String X String Y int m int n) { int []L = new int[m + 1n + 1]; /* Following steps build L[m+1n+1] in bottom up fashion. Note that L[ij] contains length of LCS of X[0..i-1] and Y[0..j-1] */ for (int i = 0; i <= m; i++) { for (int j = 0; j <= n; j++) { if (i == 0 || j == 0) { L[i j] = 0; } else if (X[i - 1] == Y[j - 1]) { L[i j] = L[i - 1 j - 1] + 1; } else { L[i j] = Math.Max(L[i - 1 j] L[i j - 1]); } } } // L[mn] contains length // of LCS for X and Y return L[m n]; } // find if given String is // K-Palindrome or not static bool isKPal(String str int k) { int n = str.Length; // Find reverse of String str = reverse(str); // find longest palindromic // subsequence of given String int lps = lcs(str str n n); // If the difference between longest // palindromic subsequence and the // original String is less than equal // to k then the String is k-palindrome return (n - lps <= k); } static String reverse(String input) { char[] temparray = input.ToCharArray(); int left right = 0; right = temparray.Length - 1; for (left = 0; left < right; left++ right--) { // Swap values of left and right char temp = temparray[left]; temparray[left] = temparray[right]; temparray[right] = temp; } return String.Join(''temparray); } // Driver code public static void Main(String[] args) { String str = 'abcdeca'; int k = 2; if (isKPal(str k)) { Console.WriteLine('Yes'); } else Console.WriteLine('No'); } } // This code is contributed by PrinciRaj1992
JavaScript <script> // JavaScript program to find // if given string is K-Palindrome // or not // Returns length of LCS // for X[0..m-1] Y[0..n-1] function lcs(X Y m n ){ let L = new Array(m+1); for(let i=0;i<m+1;i++){ L[i] = new Array(n+1).fill(0); } // Following steps build // L[m+1][n+1] in bottom up // fashion. Note that L[i][j] // contains length of // LCS of X[0..i-1] and Y[0..j-1] for(let i = 0; i < m + 1; i++) { for(let j = 0; j < n + 1; j++) { if(!i || !j) L[i][j] = 0 else if(X[i - 1] == Y[j - 1]) L[i][j] = L[i - 1][j - 1] + 1 else L[i][j] = Math.max(L[i - 1][j] L[i][j - 1]) } } // L[m][n] contains length // of LCS for X and Y return L[m][n] } // find if given string is // K-Palindrome or not function isKPal(string k){ let n = string.length // Find reverse of string let revStr = string.split('').reverse().join('') // find longest palindromic // subsequence of // given string let lps = lcs(string revStr n n) // If the difference between // longest palindromic // subsequence and the original // string is less // than equal to k then // the string is k-palindrome return (n - lps <= k) } // Driver program let string = 'abcdeca' let k = 2 document.write(isKPal(string k)?'Yes' : 'No') // This code is contributed by shinjanpatra </script>
Sortir
Yes
Complexité temporelle de la solution ci-dessus est O(n2).
Espace auxiliaire utilisé par le programme est O(n2). Il peut en outre être réduit à O(n) en utilisant Solution spatiale optimisée de LCS .
Grâce à Ravin que tu as rétréci pour avoir suggéré la solution ci-dessus.