Étant donné de nombreuses piles de pièces disposées de manière adjacente. Nous devons collecter toutes ces pièces en un nombre minimum d'étapes où, en une seule étape, nous pouvons collecter une ligne horizontale de pièces ou une ligne verticale de pièces et les pièces collectées doivent être continues.
Exemples :
Input : height[] = [2 1 2 5 1] Each value of this array corresponds to the height of stack that is we are given five stack of coins where in first stack 2 coins are there then in second stack 1 coin is there and so on. Output : 4 We can collect all above coins in 4 steps which are shown in below diagram. Each step is shown by different color. First we have collected last horizontal line of coins after which stacks remains as [1 0 1 4 0] after that another horizontal line of coins is collected from stack 3 and 4 then a vertical line from stack 4 and at the end a horizontal line from stack 1. Total steps are 4.
logique du premier ordre
Nous pouvons résoudre ce problème en utilisant la méthode diviser pour régner. On voit qu’il est toujours avantageux de supprimer les lignes horizontales par le bas. Supposons que nous travaillions sur des piles de l'index à l'index r dans une étape de récursion à chaque fois que nous choisirons la hauteur minimale, supprimerons ces nombreuses lignes horizontales, après quoi la pile sera divisée en deux parties l au minimum et minimum +1 jusqu'à r et nous appellerons de manière récursive dans ces sous-tableaux. Une autre chose est que nous pouvons également collecter des pièces en utilisant des lignes verticales, nous choisirons donc le minimum entre le résultat des appels récursifs et (r - l) car en utilisant (r - l) des lignes verticales, nous pouvons toujours collecter toutes les pièces.
Comme chaque fois que nous appelons chaque sous-tableau et que nous trouvons le minimum de cette complexité temporelle totale de la solution, ce sera O (N2)
C++
// C++ program to find minimum number of // steps to collect stack of coins #include using namespace std; // recursive method to collect coins from // height array l to r with height h already // collected int minStepsRecur(int height[] int l int r int h) { // if l is more than r no steps needed if (l >= r) return 0; // loop over heights to get minimum height // index int m = l; for (int i = l; i < r; i++) if (height[i] < height[m]) m = i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array int minSteps(int height[] int N) { return minStepsRecur(height 0 N 0); } // Driver code to test above methods int main() { int height[] = { 2 1 2 5 1 }; int N = sizeof(height) / sizeof(int); cout << minSteps(height N) << endl; return 0; }
Java // Java Code to Collect all coins in // minimum number of steps import java.util.*; class GFG { // recursive method to collect coins from // height array l to r with height h already // collected public static int minStepsRecur(int height[] int l int r int h) { // if l is more than r no steps needed if (l >= r) return 0; // loop over heights to get minimum height // index int m = l; for (int i = l; i < r; i++) if (height[i] < height[m]) m = i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return Math.min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array public static int minSteps(int height[] int N) { return minStepsRecur(height 0 N 0); } /* Driver program to test above function */ public static void main(String[] args) { int height[] = { 2 1 2 5 1 }; int N = height.length; System.out.println(minSteps(height N)); } } // This code is contributed by Arnav Kr. Mandal.
Python 3 # Python 3 program to find # minimum number of steps # to collect stack of coins # recursive method to collect # coins from height array l to # r with height h already # collected def minStepsRecur(height l r h): # if l is more than r # no steps needed if l >= r: return 0; # loop over heights to # get minimum height index m = l for i in range(l r): if height[i] < height[m]: m = i # choose minimum from # 1) collecting coins using # all vertical lines (total r - l) # 2) collecting coins using # lower horizontal lines and # recursively on left and # right segments return min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h) # method returns minimum number # of step to collect coin from # stack with height in height[] array def minSteps(height N): return minStepsRecur(height 0 N 0) # Driver code height = [ 2 1 2 5 1 ] N = len(height) print(minSteps(height N)) # This code is contributed # by ChitraNayal
C# // C# Code to Collect all coins in // minimum number of steps using System; class GFG { // recursive method to collect coins from // height array l to r with height h already // collected public static int minStepsRecur(int[] height int l int r int h) { // if l is more than r no steps needed if (l >= r) return 0; // loop over heights to // get minimum height index int m = l; for (int i = l; i < r; i++) if (height[i] < height[m]) m = i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return Math.Min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array public static int minSteps(int[] height int N) { return minStepsRecur(height 0 N 0); } /* Driver program to test above function */ public static void Main() { int[] height = { 2 1 2 5 1 }; int N = height.Length; Console.Write(minSteps(height N)); } } // This code is contributed by nitin mittal
PHP // PHP program to find minimum number of // steps to collect stack of coins // recursive method to collect // coins from height array l to // r with height h already // collected function minStepsRecur($height $l $r $h) { // if l is more than r // no steps needed if ($l >= $r) return 0; // loop over heights to // get minimum height // index $m = $l; for ($i = $l; $i < $r; $i++) if ($height[$i] < $height[$m]) $m = $i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return min($r - $l minStepsRecur($height $l $m $height[$m]) + minStepsRecur($height $m + 1 $r $height[$m]) + $height[$m] - $h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array function minSteps($height $N) { return minStepsRecur($height 0 $N 0); } // Driver Code $height = array(2 1 2 5 1); $N = sizeof($height); echo minSteps($height $N) ; // This code is contributed by nitin mittal. ?> JavaScript <script> // Javascript Code to Collect all coins in // minimum number of steps // recursive method to collect coins from // height array l to r with height h already // collected function minStepsRecur(heightlrh) { // if l is more than r no steps needed if (l >= r) return 0; // loop over heights to get minimum height // index let m = l; for (let i = l; i < r; i++) if (height[i] < height[m]) m = i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return Math.min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array function minSteps(heightN) { return minStepsRecur(height 0 N 0); } /* Driver program to test above function */ let height=[2 1 2 5 1 ]; let N = height.length; document.write(minSteps(height N)); // This code is contributed by avanitrachhadiya2155 </script>
Sortir:
4
Complexité temporelle : La complexité temporelle de cet algorithme est O(N^2) où N est le nombre d'éléments dans le tableau de hauteurs.
Complexité spatiale : La complexité spatiale de cet algorithme est O(N) en raison des appels récursifs effectués sur le tableau de hauteur.