#practiceLinkDiv { display : aucun !important; }Étant donné une matrice binaire qui contient uniquement des 0 et des 1, nous devons trouver la somme de couverture de tous les zéros de la matrice où la couverture pour un 0 particulier est définie comme le nombre total de un autour d'un zéro dans les directions gauche, droite, haut et bas. Ceux-ci peuvent être n’importe où jusqu’au coin dans une direction.
Exemples :
Input : mat[][] = {0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0} Output : 20 First four zeros are surrounded by only one 1. So coverage for zeros in first row is 1 + 1 + 1 + 1 Zeros in second row are surrounded by three 1's. Note that there is no 1 above. There are 1's in all other three directions. Coverage of zeros in second row = 3 + 3. Similarly counting for others also we get overall count as below. 1 + 1 + 1 + 1 + 3 + 3 + 2 + 2 + 2 + 2 + 2 = 20 Input : mat[][] = {1 1 1 0 1 0 0 1} Output : 8 Coverage of first zero is 2 Coverages of other two zeros is 3 Total coverage = 2 + 3 + 3 = 8Recommended Practice Couverture de tous les zéros dans une matrice binaire Essayez-le ! UN solution simple pour résoudre ce problème, il faut compter les uns autour des zéros indépendamment, c'est-à-dire que nous exécutons la boucle quatre fois dans chaque direction pour chaque cellule de la matrice donnée. Chaque fois que nous trouvons un 1 dans une boucle, nous cassons la boucle et incrémentons le résultat de 1.
Un solution efficace est de faire ce qui suit.
- Parcourez toutes les lignes du résultat de l'incrément de gauche à droite si un 1 est déjà vu (dans le parcours actuel) et que l'élément actuel est 0.
- Parcourez toutes les lignes du résultat de l'incrément de droite à gauche si un 1 est déjà vu (dans le parcours actuel) et que l'élément actuel est 0.
- Parcourez toutes les colonnes du résultat de l'incrément de haut en bas si un 1 est déjà vu (dans le parcours actuel) et que l'élément actuel est 0.
- Parcourez toutes les colonnes du résultat de l'incrément de bas en haut si un 1 est déjà vu (dans le parcours actuel) et que l'élément actuel est 0.
Dans le code ci-dessous, une variable booléenne isOne est prise et devient vraie dès qu'un un est rencontré dans le parcours actuel pour tous les zéros après que le résultat de l'itération soit incrémenté par une même procédure appliquée dans les quatre directions pour obtenir la réponse finale. Nous réinitialisons isOne sur false après chaque parcours.
C++// C++ program to get total coverage of all zeros in // a binary matrix #include using namespace std; #define R 4 #define C 4 // Returns total coverage of all zeros in mat[][] int getTotalCoverageOfMatrix(int mat[R][C]) { int res = 0; // looping for all rows of matrix for (int i = 0; i < R; i++) { bool isOne = false; // 1 is not seen yet // looping in columns from left to right // direction to get left ones for (int j = 0; j < C; j++) { // If one is found from left if (mat[i][j] == 1) isOne = true; // If 0 is found and we have found // a 1 before. else if (isOne) res++; } // Repeat the above process for right to // left direction. isOne = false; for (int j = C-1; j >= 0; j--) { if (mat[i][j] == 1) isOne = true; else if (isOne) res++; } } // Traversing across columns for up and down // directions. for (int j = 0; j < C; j++) { bool isOne = false; // 1 is not seen yet for (int i = 0; i < R; i++) { if (mat[i][j] == 1) isOne = true; else if (isOne) res++; } isOne = false; for (int i = R-1; i >= 0; i--) { if (mat[i][j] == 1) isOne = true; else if (isOne) res++; } } return res; } // Driver code to test above methods int main() { int mat[R][C] = {{0 0 0 0} {1 0 0 1} {0 1 1 0} {0 1 0 0} }; cout << getTotalCoverageOfMatrix(mat); return 0; }
Java // Java program to get total // coverage of all zeros in // a binary matrix import java .io.*; class GFG { static int R = 4; static int C = 4; // Returns total coverage // of all zeros in mat[][] static int getTotalCoverageOfMatrix(int [][]mat) { int res = 0; // looping for all // rows of matrix for (int i = 0; i < R; i++) { // 1 is not seen yet boolean isOne = false; // looping in columns from // left to right direction // to get left ones for (int j = 0; j < C; j++) { // If one is found // from left if (mat[i][j] == 1) isOne = true; // If 0 is found and we // have found a 1 before. else if (isOne) res++; } // Repeat the above // process for right // to left direction. isOne = false; for (int j = C - 1; j >= 0; j--) { if (mat[i][j] == 1) isOne = true; else if (isOne) res++; } } // Traversing across columns // for up and down directions. for (int j = 0; j < C; j++) { // 1 is not seen yet boolean isOne = false; for (int i = 0; i < R; i++) { if (mat[i][j] == 1) isOne = true; else if (isOne) res++; } isOne = false; for (int i = R - 1; i >= 0; i--) { if (mat[i][j] == 1) isOne = true; else if (isOne) res++; } } return res; } // Driver code static public void main (String[] args) { int [][]mat = {{0 0 0 0} {1 0 0 1} {0 1 1 0} {0 1 0 0}}; System.out.println( getTotalCoverageOfMatrix(mat)); } } // This code is contributed by anuj_67.
Python3 # Python3 program to get total coverage of all zeros in # a binary matrix R = 4 C = 4 # Returns total coverage of all zeros in mat[][] def getTotalCoverageOfMatrix(mat): res = 0 # looping for all rows of matrix for i in range(R): isOne = False # 1 is not seen yet # looping in columns from left to right # direction to get left ones for j in range(C): # If one is found from left if (mat[i][j] == 1): isOne = True # If 0 is found and we have found # a 1 before. else if (isOne): res += 1 # Repeat the above process for right to # left direction. isOne = False for j in range(C - 1 -1 -1): if (mat[i][j] == 1): isOne = True else if (isOne): res += 1 # Traversing across columns for up and down # directions. for j in range(C): isOne = False # 1 is not seen yet for i in range(R): if (mat[i][j] == 1): isOne = True else if (isOne): res += 1 isOne = False for i in range(R - 1 -1 -1): if (mat[i][j] == 1): isOne = True else if (isOne): res += 1 return res # Driver code mat = [[0 0 0 0][1 0 0 1][0 1 1 0][0 1 0 0]] print(getTotalCoverageOfMatrix(mat)) # This code is contributed by shubhamsingh10
C# // C# program to get total coverage // of all zeros in a binary matrix using System; class GFG { static int R = 4; static int C = 4; // Returns total coverage of all zeros in mat[][] static int getTotalCoverageOfMatrix(int []mat) { int res = 0; // looping for all rows of matrix for (int i = 0; i < R; i++) { // 1 is not seen yet bool isOne = false; // looping in columns from left to // right direction to get left ones for (int j = 0; j < C; j++) { // If one is found from left if (mat[ij] == 1) isOne = true; // If 0 is found and we // have found a 1 before. else if (isOne) res++; } // Repeat the above process for // right to left direction. isOne = false; for (int j = C-1; j >= 0; j--) { if (mat[ij] == 1) isOne = true; else if (isOne) res++; } } // Traversing across columns // for up and down directions. for (int j = 0; j < C; j++) { // 1 is not seen yet bool isOne = false; for (int i = 0; i < R; i++) { if (mat[ij] == 1) isOne = true; else if (isOne) res++; } isOne = false; for (int i = R-1; i >= 0; i--) { if (mat[ij] == 1) isOne = true; else if (isOne) res++; } } return res; } // Driver code to test above methods static public void Main () { int []mat = {{0 0 0 0} {1 0 0 1} {0 1 1 0} {0 1 0 0}}; Console.WriteLine(getTotalCoverageOfMatrix(mat)); } } // This code is contributed by vt_m.
JavaScript <script> // Javascript program to get total // coverage of all zeros in // a binary matrix let R = 4; let C = 4; // Returns total coverage // of all zeros in mat[][] function getTotalCoverageOfMatrix(mat) { let res = 0; // looping for all // rows of matrix for (let i = 0; i < R; i++) { // 1 is not seen yet let isOne = false; // looping in columns from // left to right direction // to get left ones for (let j = 0; j < C; j++) { // If one is found // from left if (mat[i][j] == 1) isOne = true; // If 0 is found and we // have found a 1 before. else if (isOne) res++; } // Repeat the above // process for right // to left direction. isOne = false; for (let j = C - 1; j >= 0; j--) { if (mat[i][j] == 1) isOne = true; else if (isOne) res++; } } // Traversing across columns // for up and down directions. for (let j = 0; j < C; j++) { // 1 is not seen yet let isOne = false; for (let i = 0; i < R; i++) { if (mat[i][j] == 1) isOne = true; else if (isOne) res++; } isOne = false; for (let i = R - 1; i >= 0; i--) { if (mat[i][j] == 1) isOne = true; else if (isOne) res++; } } return res; } let mat = [[0 0 0 0] [1 0 0 1] [0 1 1 0] [0 1 0 0]]; document.write(getTotalCoverageOfMatrix(mat)); </script>
Sortir
20
Complexité temporelle : O(n2)
Espace auxiliaire : O(1)
Créer un quiz