logo

Imprimer les nœuds extrêmes de chaque niveau de l'arbre binaire dans un ordre alterné

Essayez-le sur GfG Practice Imprimer les nœuds extrêmes de chaque niveau de l'arbre binaire dans un ordre alterné' title= #practiceLinkDiv { display : aucun !important; }

Étant donné un arbre binaire, imprimez les nœuds des coins extrêmes de chaque niveau mais dans un ordre alterné.
Exemple: 
 

Sridevi

' title=



For above tree the output can be   1 2 7 8 31    - print rightmost node of 1st level  - print leftmost node of 2nd level  - print rightmost node of 3rd level  - print leftmost node of 4th level  - print rightmost node of 5th level OR   1 3 4 15 16    - print leftmost node of 1st level  - print rightmost node of 2nd level  - print leftmost node of 3rd level  - print rightmost node of 4th level  - print leftmost node of 5th level
Recommended Practice Nœuds extrêmes dans un ordre alterné Essayez-le !

L’idée est de parcourir l’arbre niveau par niveau. Pour chaque niveau, nous comptons le nombre de nœuds et imprimons son nœud le plus à gauche ou le plus à droite en fonction de la valeur d'un indicateur booléen. Nous retirons tous les nœuds du niveau actuel et mettons en file d'attente tous les nœuds du niveau suivant et inversons la valeur de l'indicateur booléen lors du changement de niveau.

Vous trouverez ci-dessous la mise en œuvre de l’idée ci-dessus – 

C++
/* C++ program to print nodes of extreme corners of each level in alternate order */ #include    using namespace std; /* A binary tree node has data pointer to left child and a pointer to right child */ struct Node {  int data;  Node *left *right; }; /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ Node* newNode(int data) {  Node* node = new Node;  node->data = data;  node->right = node->left = NULL;  return node; } /* Function to print nodes of extreme corners of each level in alternate order */ void printExtremeNodes(Node* root) {  if (root == NULL)  return;  // Create a queue and enqueue left and right  // children of root  queue<Node*> q;  q.push(root);  // flag to indicate whether leftmost node or  // the rightmost node has to be printed  bool flag = false;  while (!q.empty())  {  // nodeCount indicates number of nodes  // at current level.  int nodeCount = q.size();  int n = nodeCount;  // Dequeue all nodes of current level  // and Enqueue all nodes of next level  while (n--)  {  Node* curr = q.front();  // Enqueue left child  if (curr->left)  q.push(curr->left);  // Enqueue right child  if (curr->right)  q.push(curr->right);  // Dequeue node  q.pop();  // if flag is true print leftmost node  if (flag && n == nodeCount - 1)  cout << curr->data << ' ';  // if flag is false print rightmost node  if (!flag && n == 0)  cout << curr->data << ' ';  }  // invert flag for next level  flag = !flag;  } } /* Driver program to test above functions */ int main() {  // Binary Tree of Height 4  Node* root = newNode(1);  root->left = newNode(2);  root->right = newNode(3);  root->left->left = newNode(4);  root->left->right = newNode(5);  root->right->right = newNode(7);  root->left->left->left = newNode(8);  root->left->left->right = newNode(9);  root->left->right->left = newNode(10);  root->left->right->right = newNode(11);  root->right->right->left = newNode(14);  root->right->right->right = newNode(15);  root->left->left->left->left = newNode(16);  root->left->left->left->right = newNode(17);  root->right->right->right->right = newNode(31);  printExtremeNodes(root);  return 0; } 
Java
// Java program to print nodes of extreme corners  //of each level in alternate order  import java.util.*; class GFG {   // A binary tree node has data pointer to left child  //and a pointer to right child / static class Node  {   int data;   Node left right;  };  // Helper function that allocates a new node with the  //given data and null left and right pointers. / static Node newNode(int data)  {   Node node = new Node();   node.data = data;   node.right = node.left = null;   return node;  }  // Function to print nodes of extreme corners  //of each level in alternate order  static void printExtremeNodes(Node root)  {   if (root == null)   return;   // Create a queue and enqueue left and right   // children of root   Queue<Node> q = new LinkedList<Node>();   q.add(root);   // flag to indicate whether leftmost node or   // the rightmost node has to be printed   boolean flag = false;   while (q.size()>0)   {   // nodeCount indicates number of nodes   // at current level.   int nodeCount = q.size();   int n = nodeCount;   // Dequeue all nodes of current level   // and Enqueue all nodes of next level   while (n-->0)   {   Node curr = q.peek();   // Enqueue left child   if (curr.left!=null)   q.add(curr.left);   // Enqueue right child   if (curr.right!=null)   q.add(curr.right);   // Dequeue node   q.remove();   // if flag is true print leftmost node   if (flag && n == nodeCount - 1)   System.out.print( curr.data + ' ');  // if flag is false print rightmost node   if (!flag && n == 0)   System.out.print( curr.data + ' ');   }     // invert flag for next level   flag = !flag;   }  }  // Driver code public static void main(String args[]) {   // Binary Tree of Height 4   Node root = newNode(1);   root.left = newNode(2);   root.right = newNode(3);   root.left.left = newNode(4);   root.left.right = newNode(5);   root.right.right = newNode(7);   root.left.left.left = newNode(8);   root.left.left.right = newNode(9);   root.left.right.left = newNode(10);   root.left.right.right = newNode(11);   root.right.right.left = newNode(14);   root.right.right.right = newNode(15);   root.left.left.left.left = newNode(16);   root.left.left.left.right = newNode(17);   root.right.right.right.right = newNode(31);   printExtremeNodes(root);  } }  // This code is contributed by Arnab Kundu 
Python
# Python program to print nodes of extreme corners # of each level in alternate order # Utility class to create a node  class Node: def __init__(self key): self.data = key self.left = self.right = None # Utility function to create a tree node def newNode( data): temp = Node(0) temp.data = data temp.left = temp.right = None return temp # Function to print nodes of extreme corners # of each level in alternate order  def printExtremeNodes( root): if (root == None): return # Create a queue and enqueue left and right # children of root q = [] q.append(root) # flag to indicate whether leftmost node or # the rightmost node has to be printed flag = False while (len(q) > 0): # nodeCount indicates number of nodes # at current level. nodeCount = len(q) n = nodeCount # Dequeue all nodes of current level # and Enqueue all nodes of next level while (n > 0): n = n - 1 curr = q[0] # Enqueue left child if (curr.left != None): q.append(curr.left) # Enqueue right child if (curr.right != None): q.append(curr.right) # Dequeue node q.pop(0) # if flag is true print leftmost node if (flag and n == nodeCount - 1): print( curr.data  end=' ') # if flag is false print rightmost node if (not flag and n == 0): print( curr.data end= ' ') # invert flag for next level flag = not flag # Driver program to test above functions  # Binary Tree of Height 4 root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(4) root.left.right = newNode(5) root.right.right = newNode(7) root.left.left.left = newNode(8) root.left.left.right = newNode(9) root.left.right.left = newNode(10) root.left.right.right = newNode(11) root.right.right.left = newNode(14) root.right.right.right = newNode(15) root.left.left.left.left = newNode(16) root.left.left.left.right = newNode(17) root.right.right.right.right = newNode(31) printExtremeNodes(root) # This code is contributed by Arnab Kundu 
C#
// C# program to print nodes of extreme corners  //of each level in alternate order  using System; using System.Collections.Generic; class GFG {   // A binary tree node has data pointer to left child  //and a pointer to right child / public class Node  {   public int data;   public Node left right;  };  // Helper function that allocates a new node with the  //given data and null left and right pointers. / static Node newNode(int data)  {   Node node = new Node();   node.data = data;   node.right = node.left = null;   return node;  }  // Function to print nodes of extreme corners  //of each level in alternate order  static void printExtremeNodes(Node root)  {   if (root == null)   return;   // Create a queue and enqueue left and right   // children of root   Queue<Node> q = new Queue<Node>();   q.Enqueue(root);   // flag to indicate whether leftmost node or   // the rightmost node has to be printed   Boolean flag = false;   while (q.Count > 0)   {   // nodeCount indicates number of nodes   // at current level.   int nodeCount = q.Count;   int n = nodeCount;   // Dequeue all nodes of current level   // and Enqueue all nodes of next level   while (n-->0)   {   Node curr = q.Peek();   // Enqueue left child   if (curr.left != null)   q.Enqueue(curr.left);   // Enqueue right child   if (curr.right != null)   q.Enqueue(curr.right);   // Dequeue node   q.Dequeue();   // if flag is true print leftmost node   if (flag && n == nodeCount - 1)   Console.Write( curr.data + ' ');  // if flag is false print rightmost node   if (!flag && n == 0)   Console.Write( curr.data + ' ');   }     // invert flag for next level   flag = !flag;   }  }  // Driver code public static void Main(String []args) {   // Binary Tree of Height 4   Node root = newNode(1);   root.left = newNode(2);   root.right = newNode(3);   root.left.left = newNode(4);   root.left.right = newNode(5);   root.right.right = newNode(7);   root.left.left.left = newNode(8);   root.left.left.right = newNode(9);   root.left.right.left = newNode(10);   root.left.right.right = newNode(11);   root.right.right.left = newNode(14);   root.right.right.right = newNode(15);   root.left.left.left.left = newNode(16);   root.left.left.left.right = newNode(17);   root.right.right.right.right = newNode(31);   printExtremeNodes(root);  } } // This code is contributed by Rajput-Ji 
JavaScript
<script>   // JavaScript program to print nodes of extreme corners  //of each level in alternate order    // A binary tree node has data pointer to left child  //and a pointer to right child / class Node  {   constructor()  {  this.data = 0;  this.left = null;  this.right = null;  } };  // Helper function that allocates a new node with the  //given data and null left and right pointers. / function newNode(data)  {   var node = new Node();   node.data = data;   node.right = node.left = null;   return node;  }  // Function to print nodes of extreme corners  //of each level in alternate order  function printExtremeNodes(root)  {   if (root == null)   return;   // Create a queue and enqueue left and right   // children of root   var q = [];   q.push(root);   // flag to indicate whether leftmost node or   // the rightmost node has to be printed   var flag = false;   while (q.length > 0)   {   // nodeCount indicates number of nodes   // at current level.   var nodeCount = q.length;   var n = nodeCount;   // Dequeue all nodes of current level   // and push all nodes of next level   while (n-->0)   {   var curr = q[0];   // push left child   if (curr.left != null)   q.push(curr.left);   // push right child   if (curr.right != null)   q.push(curr.right);   // Dequeue node   q.shift();   // if flag is true print leftmost node   if (flag && n == nodeCount - 1)   document.write( curr.data + ' ');  // if flag is false print rightmost node   if (!flag && n == 0)   document.write( curr.data + ' ');   }     // invert flag for next level   flag = !flag;   }  }  // Driver code // Binary Tree of Height 4  var root = newNode(1);  root.left = newNode(2);  root.right = newNode(3);  root.left.left = newNode(4);  root.left.right = newNode(5);  root.right.right = newNode(7);  root.left.left.left = newNode(8);  root.left.left.right = newNode(9);  root.left.right.left = newNode(10);  root.left.right.right = newNode(11);  root.right.right.left = newNode(14);  root.right.right.right = newNode(15);  root.left.left.left.left = newNode(16);  root.left.left.left.right = newNode(17);  root.right.right.right.right = newNode(31);  printExtremeNodes(root);  </script>  

Sortir
1 2 7 8 31 


Complexité temporelle : O(n) où n est le nombre total de nœuds dans un arbre binaire donné.
Espace auxiliaire : O(n) où n est le nombre total de nœuds dans un arbre binaire donné en raison de la file d'attente.



matrices en programmation C

Exercice - Imprimez les nœuds des coins extrêmes de chaque niveau de bas en haut dans un ordre alterné.