logo

Puissance d'un nombre en Java

Dans cette section, nous écrirons des programmes Java pour déterminer la puissance d’un nombre. Pour obtenir la puissance d’un nombre, multipliez le nombre par son exposant.

Exemple:

Supposons que la base soit 5 et que l'exposant soit 4. Pour obtenir la puissance d'un nombre, multipliez-le par lui-même quatre fois, c'est-à-dire (5 * 5 * 5 * 5 = 625).

Comment déterminer la puissance d’un nombre ?

  • La base et l'exposant doivent être lus ou initialisés.
  • Prenez une autre puissance variable et réglez-la sur 1 pour enregistrer le résultat.
  • Multipliez la base par la puissance et stockez le résultat en puissance à l'aide de la boucle for ou while.
  • Répétez l'étape 3 jusqu'à ce que l'exposant soit égal à zéro.
  • Imprimez la sortie.

Méthodes pour trouver la puissance d'un nombre

Il existe plusieurs méthodes pour déterminer la puissance d'un nombre :

trier dans la liste en Java
  1. Utiliser Java pour la boucle
  2. Utiliser Java en boucle
  3. Utiliser la récursivité
  4. Utilisation de la méthode Math.pow()
  5. Utilisation de la manipulation de bits

1. Utiliser Java pour la boucle

Une boucle for peut être utilisée pour calculer la puissance d'un nombre en multipliant la base par elle-même à plusieurs reprises.

PuissanceDeNuméro1.java

 public class PowerOfNumber1 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = 1; for (int i = 0; i <exponent; i++) { result *="base;" } system.out.println(base + ' raised to the power of exponent is result); < pre> <p> <strong>Output:</strong> </p> <pre> 2 raised to the power of 3 is 8 </pre> <h3>2. Using Java while Loop</h3> <p>A while loop may similarly be used to achieve the same result by multiplying the base many times.</p> <p> <strong>PowerOfNumber2.java</strong> </p> <pre> public class PowerOfNumber2 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = 1; int power=3; while (exponent &gt; 0) { result *= base; exponent--; } System.out.println(base + &apos; raised to the power of &apos; + power + &apos; is &apos; + result); } } </pre> <p> <strong>Output:</strong> </p> <pre> 2 raised to the power of 3 is 8 </pre> <h3>3. Using Recursion:</h3> <p>Recursion is the process of breaking down an issue into smaller sub-problems. Here&apos;s an example of how recursion may be used to compute a number&apos;s power.</p> <p> <strong>PowerOfNumber3.java</strong> </p> <pre> public class PowerOfNumber3 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = power(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is &apos; + result); } public static int power(int base, int exponent) { if (exponent == 0) { return 1; } else { return base * power(base, exponent - 1); } } } </pre> <p> <strong>Output:</strong> </p> <pre> 2 raised to the power of 3 is 8 </pre> <h3>4. Using Math.pow() Method</h3> <p>The java.lang package&apos;s Math.pow() function computes the power of an integer directly.</p> <p> <strong>PowerOfNumber4.java</strong> </p> <pre> public class PowerOfNumber4 { public static void main(String[] args) { double base = 2.0; double exponent = 3.0; double result = Math.pow(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is &apos; + result); } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 3.0 is 8.0 </pre> <h3>Handling Negative Exponents:</h3> <p>When dealing with negative exponents, the idea of reciprocal powers might be useful. For instance, x^(-n) equals 1/x^n. Here&apos;s an example of dealing with negative exponents.</p> <p> <strong>PowerOfNumber5.java</strong> </p> <pre> public class PowerOfNumber5 { public static void main(String[] args) { double base = 2.0; int exponent = -3; double result = calculatePower(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is: &apos; + result); } static double calculatePower(double base, int exponent) { if (exponent &gt;= 0) { return calculatePositivePower(base, exponent); } else { return 1.0 / calculatePositivePower(base, -exponent); } } static double calculatePositivePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of -3 is: 0.125 </pre> <h3>Optimizing for Integer Exponents:</h3> <p>When dealing with integer exponents, you may optimize the calculation by iterating only as many times as the exponent value. It decreases the number of unneeded multiplications.</p> <p> <strong>PowerOfNumber6.java</strong> </p> <pre> public class PowerOfNumber6 { public static void main(String[] args) { double base = 2.0; int exponent = 4; double result = calculatePower(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is: &apos; + result); } static double calculatePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 4 is: 16.0 </pre> <h3>5. Using Bit Manipulation to Calculate Binary Exponents:</h3> <p>Bit manipulation can be used to better improve integer exponents. To do fewer multiplications, an exponent&apos;s binary representation might be used.</p> <p> <strong>PowerOfNumber7.java</strong> </p> <pre> public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is: &apos; + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent &gt; 0) { if ((exponent &amp; 1) == 1) { result *= base; } base *= base; exponent &gt;&gt;= 1; } return result; } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 5 is: 32.0 </pre> <hr></exponent;></pre></exponent;></pre></exponent;>

2. Utiliser Java en boucle

Une boucle while peut également être utilisée pour obtenir le même résultat en multipliant la base plusieurs fois.

PowerOfNumber2.java

 public class PowerOfNumber2 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = 1; int power=3; while (exponent &gt; 0) { result *= base; exponent--; } System.out.println(base + &apos; raised to the power of &apos; + power + &apos; is &apos; + result); } } 

Sortir:

 2 raised to the power of 3 is 8 

3. Utilisation de la récursivité :

La récursivité est le processus de décomposition d'un problème en sous-problèmes plus petits. Voici un exemple de la façon dont la récursivité peut être utilisée pour calculer la puissance d'un nombre.

déclaration d'impression en Java

PowerOfNumber3.java

 public class PowerOfNumber3 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = power(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is &apos; + result); } public static int power(int base, int exponent) { if (exponent == 0) { return 1; } else { return base * power(base, exponent - 1); } } } 

Sortir:

 2 raised to the power of 3 is 8 

4. Utilisation de la méthode Math.pow()

La fonction Math.pow() du package java.lang calcule directement la puissance d'un entier.

PowerOfNumber4.java

 public class PowerOfNumber4 { public static void main(String[] args) { double base = 2.0; double exponent = 3.0; double result = Math.pow(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is &apos; + result); } } 

Sortir:

comment renommer un répertoire sous Linux
 2.0 raised to the power of 3.0 is 8.0 

Gestion des exposants négatifs :

Lorsqu’il s’agit d’exposants négatifs, l’idée de puissances réciproques peut être utile. Par exemple, x^(-n) est égal à 1/x^n. Voici un exemple de gestion des exposants négatifs.

chaîne java du tableau

PowerOfNumber5.java

 public class PowerOfNumber5 { public static void main(String[] args) { double base = 2.0; int exponent = -3; double result = calculatePower(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is: &apos; + result); } static double calculatePower(double base, int exponent) { if (exponent &gt;= 0) { return calculatePositivePower(base, exponent); } else { return 1.0 / calculatePositivePower(base, -exponent); } } static double calculatePositivePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of -3 is: 0.125 </pre> <h3>Optimizing for Integer Exponents:</h3> <p>When dealing with integer exponents, you may optimize the calculation by iterating only as many times as the exponent value. It decreases the number of unneeded multiplications.</p> <p> <strong>PowerOfNumber6.java</strong> </p> <pre> public class PowerOfNumber6 { public static void main(String[] args) { double base = 2.0; int exponent = 4; double result = calculatePower(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is: &apos; + result); } static double calculatePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 4 is: 16.0 </pre> <h3>5. Using Bit Manipulation to Calculate Binary Exponents:</h3> <p>Bit manipulation can be used to better improve integer exponents. To do fewer multiplications, an exponent&apos;s binary representation might be used.</p> <p> <strong>PowerOfNumber7.java</strong> </p> <pre> public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is: &apos; + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent &gt; 0) { if ((exponent &amp; 1) == 1) { result *= base; } base *= base; exponent &gt;&gt;= 1; } return result; } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 5 is: 32.0 </pre> <hr></exponent;></pre></exponent;>

Optimisation pour les exposants entiers :

Lorsque vous traitez des exposants entiers, vous pouvez optimiser le calcul en itérant autant de fois que la valeur de l'exposant. Cela diminue le nombre de multiplications inutiles.

PuissanceOfNumber6.java

 public class PowerOfNumber6 { public static void main(String[] args) { double base = 2.0; int exponent = 4; double result = calculatePower(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is: &apos; + result); } static double calculatePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 4 is: 16.0 </pre> <h3>5. Using Bit Manipulation to Calculate Binary Exponents:</h3> <p>Bit manipulation can be used to better improve integer exponents. To do fewer multiplications, an exponent&apos;s binary representation might be used.</p> <p> <strong>PowerOfNumber7.java</strong> </p> <pre> public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is: &apos; + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent &gt; 0) { if ((exponent &amp; 1) == 1) { result *= base; } base *= base; exponent &gt;&gt;= 1; } return result; } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 5 is: 32.0 </pre> <hr></exponent;>

5. Utilisation de la manipulation de bits pour calculer les exposants binaires :

La manipulation des bits peut être utilisée pour mieux améliorer les exposants entiers. Pour faire moins de multiplications, la représentation binaire d'un exposant peut être utilisée.

PowerOfNumber7.java

 public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is: &apos; + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent &gt; 0) { if ((exponent &amp; 1) == 1) { result *= base; } base *= base; exponent &gt;&gt;= 1; } return result; } } 

Sortir:

 2.0 raised to the power of 5 is: 32.0