logo

Nième numéro de Fibonacci

Étant donné un numéro n , imprimer n-ième nombre de Fibonacci .

loup contre renard

Les nombres de Fibonacci sont les nombres de la séquence entière suivante : 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ……..



Exemples:

Saisir : n = 1

Sortir : 1

Saisir : n = 9

Sortir : 3.4

Saisir : n = 10

Sortir : 55

Problème recommandé pour résoudre le problème [/Tex] avec des valeurs de départ et F_0 = 0et F_1 = 1.

C++

// Fibonacci Series using Space Optimized Method> #include> using> namespace> std;> int> fib(>int> n)> {> >int> a = 0, b = 1, c, i;> >if> (n == 0)> >return> a;> >for> (i = 2; i <= n; i++) {> >c = a + b;> >a = b;> >b = c;> >}> >return> b;> }> // Driver code> int> main()> {> >int> n = 9;> >cout << fib(n);> >return> 0;> }> // This code is contributed by Code_Mech>
>
>

C

// Fibonacci Series using Space Optimized Method> #include> int> fib(>int> n)> {> >int> a = 0, b = 1, c, i;> >if> (n == 0)> >return> a;> >for> (i = 2; i <= n; i++) {> >c = a + b;> >a = b;> >b = c;> >}> >return> b;> }> int> main()> {> >int> n = 9;> >printf>(>'%d'>, fib(n));> >getchar>();> >return> 0;> }>
>
>

Java

// Java program for Fibonacci Series using Space> // Optimized Method> public> class> fibonacci {> >static> int> fib(>int> n)> >{> >int> a =>0>, b =>1>, c;> >if> (n ==>0>)> >return> a;> >for> (>int> i =>2>; i <= n; i++) {> >c = a + b;> >a = b;> >b = c;> >}> >return> b;> >}> >public> static> void> main(String args[])> >{> >int> n =>9>;> >System.out.println(fib(n));> >}> };> // This code is contributed by Mihir Joshi>
>
>

Python3

# Function for nth fibonacci number - Space Optimisation> # Taking 1st two fibonacci numbers as 0 and 1> def> fibonacci(n):> >a>=> 0> >b>=> 1> >if> n <>0>:> >print>(>'Incorrect input'>)> >elif> n>=>=> 0>:> >return> a> >elif> n>=>=> 1>:> >return> b> >else>:> >for> i>in> range>(>2>, n>+>1>):> >c>=> a>+> b> >a>=> b> >b>=> c> >return> b> # Driver Program> print>(fibonacci(>9>))> # This code is contributed by Saket Modi>
>
>

C#

// C# program for Fibonacci Series> // using Space Optimized Method> using> System;> namespace> Fib {> public> class> GFG {> >static> int> Fib(>int> n)> >{> >int> a = 0, b = 1, c = 0;> >// To return the first Fibonacci number> >if> (n == 0)> >return> a;> >for> (>int> i = 2; i <= n; i++) {> >c = a + b;> >a = b;> >b = c;> >}> >return> b;> >}> >// Driver function> >public> static> void> Main(>string>[] args)> >{> >int> n = 9;> >Console.Write(>'{0} '>, Fib(n));> >}> }> }> // This code is contributed by Sam007.>
>
>

Javascript

> // Javascript program for Fibonacci Series using Space Optimized Method> function> fib(n)> {> >let a = 0, b = 1, c, i;> >if>( n == 0)> >return> a;> >for>(i = 2; i <= n; i++)> >{> >c = a + b;> >a = b;> >b = c;> >}> >return> b;> }> // Driver code> >let n = 9;> > >document.write(fib(n));> // This code is contributed by Mayank Tyagi> >
>
>

PHP

// PHP program for Fibonacci Series // using Space Optimized Method function fib( $n) { $a = 0; $b = 1; $c; $i; if( $n == 0) return $a; for($i = 2; $i <= $n; $i++) { $c = $a + $b; $a = $b; $b = $c; } return $b; } // Driver Code $n = 9; echo fib($n); // This code is contributed by anuj_67. ?>>
>
>

Sortir
34>

Complexité temporelle : Sur)
Espace auxiliaire : O(1)

Approche récursive pour trouver et imprimer les nièmes nombres de Fibonacci :

En termes mathématiques, la séquence Fn de nombres de Fibonacci est définie par la relation de récurrence : F_{n} = F_{n-1} + F_{n-2} avec des valeurs de départ et F_0 = 0et F_1 = 1.

Le Nième nombre de Fibonacci peut être trouvé en utilisant la relation de récurrence indiquée ci-dessus :

  • si n = 0, puis renvoie 0.
  • Si n = 1, alors il devrait renvoyer 1.
  • Pour n> 1, il devrait renvoyer Fn-1+Fn-2

Vous trouverez ci-dessous la mise en œuvre de l’approche ci-dessus :

C++

// Fibonacci Series using Recursion> #include> using> namespace> std;> int> fib(>int> n)> {> >if> (n <= 1)> >return> n;> >return> fib(n - 1) + fib(n - 2);> }> int> main()> {> >int> n = 9;> >cout << n <<>'th Fibonacci Number: '> << fib(n);> >return> 0;> }> // This code is contributed> // by Akanksha Rai>
>
>

C

// Fibonacci Series using Recursion> #include> int> fib(>int> n)> {> >if> (n <= 1)> >return> n;> >return> fib(n - 1) + fib(n - 2);> }> int> main()> {> >int> n = 9;> >printf>(>'%dth Fibonacci Number: %d'>, n, fib(n));> >return> 0;> }>
>
>

Java

// Fibonacci Series using Recursion> import> java.io.*;> class> fibonacci {> >static> int> fib(>int> n)> >{> >if> (n <=>1>)> >return> n;> >return> fib(n ->1>) + fib(n ->2>);> >}> >public> static> void> main(String args[])> >{> >int> n =>9>;> >System.out.println(> >n +>'th Fibonacci Number: '> + fib(n));> >}> }> /* This code is contributed by Rajat Mishra */>
>
>

Python3

# Fibonacci series using recursion> def> fibonacci(n):> >if> n <>=> 1>:> >return> n> >return> fibonacci(n>->1>)>+> fibonacci(n>->2>)> if> __name__>=>=> '__main__'>:> >n>=> 9> >print>(n,>'th Fibonacci Number: '>)> >print>(fibonacci(n))> ># This code is contributed by Manan Tyagi.>
>
>

C#

// C# program for Fibonacci Series> // using Recursion> using> System;> public> class> GFG {> >public> static> int> Fib(>int> n)> >{> >if> (n <= 1) {> >return> n;> >}> >else> {> >return> Fib(n - 1) + Fib(n - 2);> >}> >}> >// driver code> >public> static> void> Main(>string>[] args)> >{> >int> n = 9;> >Console.Write(n +>'th Fibonacci Number: '> + Fib(n));> >}> }> // This code is contributed by Sam007>
>
>

Javascript

// Javascript program for Fibonacci Series> // using Recursion> function> Fib(n) {> >if> (n <= 1) {> >return> n;> >}>else> {> >return> Fib(n - 1) + Fib(n - 2);> >}> }> // driver code> let n = 9;> console.log(n +>'th Fibonacci Number: '> + Fib(n));>
>
>

PHP

// PHP program for Fibonacci Series // using Recursion function Fib($n) { if ($n <= 1) { return $n; } else { return Fib($n - 1) + Fib($n - 2); } } // driver code $n = 9; echo $n . 'th Fibonacci Number: ' . Fib($n); // This code is contributed by Sam007 ?>>
>
>

Sortir
34>

Complexité temporelle : exponentielle, car chaque fonction appelle deux autres fonctions.
Complexité de l'espace auxiliaire : O(n), car la profondeur maximale de l'arbre de récursion est n.

Approche de programmation dynamique pour rechercher et imprimer les nièmes nombres de Fibonacci :

Considérez l'arbre de récursion pour le 5ème nombre de Fibonacci à partir de l'approche ci-dessus :

 fib(5)   /   fib(4) fib(3)   /  /    fib(3) fib(2) fib(2) fib(1)  /  /  /   fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)  /  fib(1) fib(0)>

Si vous voyez, le même appel de méthode est effectué plusieurs fois pour la même valeur. Cela peut être optimisé à l’aide de la programmation dynamique. Nous pouvons éviter le travail répété effectué dans l'approche récursive en stockant les nombres de Fibonacci calculés jusqu'à présent.

Approche de programmation dynamique pour rechercher et imprimer les nièmes nombres de Fibonacci :

Approche de programmation dynamique pour rechercher et imprimer les nièmes nombres de Fibonacci :

Vous trouverez ci-dessous la mise en œuvre de l’approche ci-dessus :

C++

// C++ program for Fibonacci Series> // using Dynamic Programming> #include> using> namespace> std;> class> GFG {> public>:> >int> fib(>int> n)> >{> >// Declare an array to store> >// Fibonacci numbers.> >// 1 extra to handle> >// case, n = 0> >int> f[n + 2];> >int> i;> >// 0th and 1st number of the> >// series are 0 and 1> >f[0] = 0;> >f[1] = 1;> >for> (i = 2; i <= n; i++) {> >// Add the previous 2 numbers> >// in the series and store it> >f[i] = f[i - 1] + f[i - 2];> >}> >return> f[n];> >}> };> // Driver code> int> main()> {> >GFG g;> >int> n = 9;> >cout << g.fib(n);> >return> 0;> }> // This code is contributed by SoumikMondal>
>
>

C

// Fibonacci Series using Dynamic Programming> #include> int> fib(>int> n)> {> >/* Declare an array to store Fibonacci numbers. */> >int> f[n + 2];>// 1 extra to handle case, n = 0> >int> i;> >/* 0th and 1st number of the series are 0 and 1*/> >f[0] = 0;> >f[1] = 1;> >for> (i = 2; i <= n; i++) {> >/* Add the previous 2 numbers in the series> >and store it */> >f[i] = f[i - 1] + f[i - 2];> >}> >return> f[n];> }> int> main()> {> >int> n = 9;> >printf>(>'%d'>, fib(n));> >getchar>();> >return> 0;> }>
>
>

Java

// Fibonacci Series using Dynamic Programming> public> class> fibonacci {> >static> int> fib(>int> n)> >{> >/* Declare an array to store Fibonacci numbers. */> >int> f[]> >=>new> int>[n> >+>2>];>// 1 extra to handle case, n = 0> >int> i;> >/* 0th and 1st number of the series are 0 and 1*/> >f[>0>] =>0>;> >f[>1>] =>1>;> >for> (i =>2>; i <= n; i++) {> >/* Add the previous 2 numbers in the series> >and store it */> >f[i] = f[i ->1>] + f[i ->2>];> >}> >return> f[n];> >}> >public> static> void> main(String args[])> >{> >int> n =>9>;> >System.out.println(fib(n));> >}> };> /* This code is contributed by Rajat Mishra */>
>
>

Python3

# Fibonacci Series using Dynamic Programming> def> fibonacci(n):> ># Taking 1st two fibonacci numbers as 0 and 1> >f>=> [>0>,>1>]> >for> i>in> range>(>2>, n>+>1>):> >f.append(f[i>->1>]>+> f[i>->2>])> >return> f[n]> print>(fibonacci(>9>))>
>
>

C#

// C# program for Fibonacci Series> // using Dynamic Programming> using> System;> class> fibonacci {> >static> int> fib(>int> n)> >{> >// Declare an array to> >// store Fibonacci numbers.> >// 1 extra to handle> >// case, n = 0> >int>[] f =>new> int>[n + 2];> >int> i;> >/* 0th and 1st number of the> >series are 0 and 1 */> >f[0] = 0;> >f[1] = 1;> >for> (i = 2; i <= n; i++) {> >/* Add the previous 2 numbers> >in the series and store it */> >f[i] = f[i - 1] + f[i - 2];> >}> >return> f[n];> >}> >// Driver Code> >public> static> void> Main()> >{> >int> n = 9;> >Console.WriteLine(fib(n));> >}> }> // This code is contributed by anuj_67.>
>
>

Javascript

> // Fibonacci Series using Dynamic Programming> >function> fib(n)> >{> >/* Declare an array to store Fibonacci numbers. */> >let f =>new> Array(n+2);>// 1 extra to handle case, n = 0> >let i;> >/* 0th and 1st number of the series are 0 and 1*/> >f[0] = 0;> >f[1] = 1;> >for> (i = 2; i <= n; i++)> >{> >/* Add the previous 2 numbers in the series> >and store it */> >f[i] = f[i-1] + f[i-2];> >}> >return> f[n];> >}> >let n=9;> >document.write(fib(n));> > >// This code is contributed by avanitrachhadiya2155> > >
>
>

PHP

//Fibonacci Series using Dynamic // Programming function fib( $n) { /* Declare an array to store Fibonacci numbers. */ // 1 extra to handle case, // n = 0 $f = array(); $i; /* 0th and 1st number of the series are 0 and 1*/ $f[0] = 0; $f[1] = 1; for ($i = 2; $i <= $n; $i++) { /* Add the previous 2 numbers in the series and store it */ $f[$i] = $f[$i-1] + $f[$i-2]; } return $f[$n]; } $n = 9; echo fib($n); // This code is contributed by // anuj_67. ?>>
>
>

Sortir
34>

Complexité temporelle : O(n) pour n donné
Espace auxiliaire : Sur)

Nième puissance de l'approche matricielle pour trouver et imprimer les Nièmes nombres de Fibonacci

Cette approche repose sur le fait que si nous multiplions n fois la matrice M = {{1,1},{1,0}} par elle-même (en d'autres termes, calculons la puissance (M, n)), alors nous obtenons le (n +1)ème numéro de Fibonacci comme élément de la ligne et de la colonne (0, 0) dans la matrice résultante.

exemple de carte Java
  • Si n est pair alors k = n/2 :
    • Donc Nième Nombre de Fibonacci = F(n) = [2*F(k-1) + F(k)]*F(k)
  • Si n est impair alors k = (n + 1)/2 :
    • Donc Nième Nombre de Fibonacci = F(n) = F(k)*F(k) + F(k-1)*F(k-1)

Comment fonctionne cette formule ?
La formule peut être dérivée de l'équation matricielle.

egin{bmatrix}1 & 1 1 & 0 end{bmatrix}^n = egin{bmatrix}F_{n+1} & F_n F_n & F_{n-1} end{bmatrix}

En prenant le déterminant des deux côtés, on obtient (-1)n=Fn+1Fn-1- Fn2

De plus, puisque AnUNm= Unn+mpour toute matrice carrée A, les identités suivantes peuvent être dérivées (elles sont obtenues à partir de deux coefficients différents du produit matriciel)

FmFn+Fm-1Fn-1=Fm+n-1 —————————(1)

En mettant n = n+1 dans l'équation (1),

FmFn+1+Fm-1Fn=Fm+n ————————–(2)

Mettre m = n dans l'équation (1).

F2n-1=Fn2+Fn-12

Mettre m = n dans l'équation (2)

F2n= (Fn-1+Fn+1)Fn= (2Fn-1+Fn)Fn——–

(En mettant Fn+1 = Fn + Fn-1 )

Pour prouver la formule, il suffit de faire ce qui suit

  • Si n est pair, on peut mettre k = n/2
  • Si n est impair, on peut mettre k = (n+1)/2

Vous trouverez ci-dessous la mise en œuvre de l'approche ci-dessus

C++

// Fibonacci Series using Optimized Method> #include> using> namespace> std;> void> multiply(>int> F[2][2],>int> M[2][2]);> void> power(>int> F[2][2],>int> n);> // Function that returns nth Fibonacci number> int> fib(>int> n)> {> >int> F[2][2] = { { 1, 1 }, { 1, 0 } };> >if> (n == 0)> >return> 0;> >power(F, n - 1);> >return> F[0][0];> }> // Optimized version of power() in method 4> void> power(>int> F[2][2],>int> n)> {> >if> (n == 0 || n == 1)> >return>;> >int> M[2][2] = { { 1, 1 }, { 1, 0 } };> >power(F, n / 2);> >multiply(F, F);> >if> (n % 2 != 0)> >multiply(F, M);> }> void> multiply(>int> F[2][2],>int> M[2][2])> {> >int> x = F[0][0] * M[0][0] + F[0][1] * M[1][0];> >int> y = F[0][0] * M[0][1] + F[0][1] * M[1][1];> >int> z = F[1][0] * M[0][0] + F[1][1] * M[1][0];> >int> w = F[1][0] * M[0][1] + F[1][1] * M[1][1];> >F[0][0] = x;> >F[0][1] = y;> >F[1][0] = z;> >F[1][1] = w;> }> // Driver code> int> main()> {> >int> n = 9;> >cout << fib(9);> >getchar>();> >return> 0;> }> // This code is contributed by Nidhi_biet>
>
>

C

#include> void> multiply(>int> F[2][2],>int> M[2][2]);> void> power(>int> F[2][2],>int> n);> /* function that returns nth Fibonacci number */> int> fib(>int> n)> {> >int> F[2][2] = { { 1, 1 }, { 1, 0 } };> >if> (n == 0)> >return> 0;> >power(F, n - 1);> >return> F[0][0];> }> /* Optimized version of power() in method 4 */> void> power(>int> F[2][2],>int> n)> {> >if> (n == 0 || n == 1)> >return>;> >int> M[2][2] = { { 1, 1 }, { 1, 0 } };> >power(F, n / 2);> >multiply(F, F);> >if> (n % 2 != 0)> >multiply(F, M);> }> void> multiply(>int> F[2][2],>int> M[2][2])> {> >int> x = F[0][0] * M[0][0] + F[0][1] * M[1][0];> >int> y = F[0][0] * M[0][1] + F[0][1] * M[1][1];> >int> z = F[1][0] * M[0][0] + F[1][1] * M[1][0];> >int> w = F[1][0] * M[0][1] + F[1][1] * M[1][1];> >F[0][0] = x;> >F[0][1] = y;> >F[1][0] = z;> >F[1][1] = w;> }> /* Driver program to test above function */> int> main()> {> >int> n = 9;> >printf>(>'%d'>, fib(9));> >getchar>();> >return> 0;> }>
>
>

Java

// Fibonacci Series using Optimized Method> public> class> fibonacci {> >/* function that returns nth Fibonacci number */> >static> int> fib(>int> n)> >{> >int> F[][] =>new> int>[][] { {>1>,>1> }, {>1>,>0> } };> >if> (n ==>0>)> >return> 0>;> >power(F, n ->1>);> >return> F[>0>][>0>];> >}> >static> void> multiply(>int> F[][],>int> M[][])> >{> >int> x = F[>0>][>0>] * M[>0>][>0>] + F[>0>][>1>] * M[>1>][>0>];> >int> y = F[>0>][>0>] * M[>0>][>1>] + F[>0>][>1>] * M[>1>][>1>];> >int> z = F[>1>][>0>] * M[>0>][>0>] + F[>1>][>1>] * M[>1>][>0>];> >int> w = F[>1>][>0>] * M[>0>][>1>] + F[>1>][>1>] * M[>1>][>1>];> >F[>0>][>0>] = x;> >F[>0>][>1>] = y;> >F[>1>][>0>] = z;> >F[>1>][>1>] = w;> >}> >/* Optimized version of power() in method 4 */> >static> void> power(>int> F[][],>int> n)> >{> >if> (n ==>0> || n ==>1>)> >return>;> >int> M[][] =>new> int>[][] { {>1>,>1> }, {>1>,>0> } };> >power(F, n />2>);> >multiply(F, F);> >if> (n %>2> !=>0>)> >multiply(F, M);> >}> >/* Driver program to test above function */> >public> static> void> main(String args[])> >{> >int> n =>9>;> >System.out.println(fib(n));> >}> };> /* This code is contributed by Rajat Mishra */>
>
>

Python3

# Fibonacci Series using> # Optimized Method> # function that returns nth> # Fibonacci number> def> fib(n):> >F>=> [[>1>,>1>],> >[>1>,>0>]]> >if> (n>=>=> 0>):> >return> 0> >power(F, n>-> 1>)> >return> F[>0>][>0>]> def> multiply(F, M):> >x>=> (F[>0>][>0>]>*> M[>0>][>0>]>+> >F[>0>][>1>]>*> M[>1>][>0>])> >y>=> (F[>0>][>0>]>*> M[>0>][>1>]>+> >F[>0>][>1>]>*> M[>1>][>1>])> >z>=> (F[>1>][>0>]>*> M[>0>][>0>]>+> >F[>1>][>1>]>*> M[>1>][>0>])> >w>=> (F[>1>][>0>]>*> M[>0>][>1>]>+> >F[>1>][>1>]>*> M[>1>][>1>])> >F[>0>][>0>]>=> x> >F[>0>][>1>]>=> y> >F[>1>][>0>]>=> z> >F[>1>][>1>]>=> w> # Optimized version of> # power() in method 4> def> power(F, n):> >if>(n>=>=> 0> or> n>=>=> 1>):> >return> >M>=> [[>1>,>1>],> >[>1>,>0>]]> >power(F, n>/>/> 2>)> >multiply(F, F)> >if> (n>%> 2> !>=> 0>):> >multiply(F, M)> # Driver Code> if> __name__>=>=> '__main__'>:> >n>=> 9> >print>(fib(n))> # This code is contributed> # by ChitraNayal>
>
>

C#

// Fibonacci Series using> // Optimized Method> using> System;> class> GFG {> >/* function that returns> >nth Fibonacci number */> >static> int> fib(>int> n)> >{> >int>[, ] F =>new> int>[, ] { { 1, 1 }, { 1, 0 } };> >if> (n == 0)> >return> 0;> >power(F, n - 1);> >return> F[0, 0];> >}> >static> void> multiply(>int>[, ] F,>int>[, ] M)> >{> >int> x = F[0, 0] * M[0, 0] + F[0, 1] * M[1, 0];> >int> y = F[0, 0] * M[0, 1] + F[0, 1] * M[1, 1];> >int> z = F[1, 0] * M[0, 0] + F[1, 1] * M[1, 0];> >int> w = F[1, 0] * M[0, 1] + F[1, 1] * M[1, 1];> >F[0, 0] = x;> >F[0, 1] = y;> >F[1, 0] = z;> >F[1, 1] = w;> >}> >/* Optimized version of> >power() in method 4 */> >static> void> power(>int>[, ] F,>int> n)> >{> >if> (n == 0 || n == 1)> >return>;> >int>[, ] M =>new> int>[, ] { { 1, 1 }, { 1, 0 } };> >power(F, n / 2);> >multiply(F, F);> >if> (n % 2 != 0)> >multiply(F, M);> >}> >// Driver Code> >public> static> void> Main()> >{> >int> n = 9;> >Console.Write(fib(n));> >}> }> // This code is contributed> // by ChitraNayal>
>
>

Javascript

> // Fibonacci Series using Optimized Method> // Function that returns nth Fibonacci number> function> fib(n)> {> >var> F = [ [ 1, 1 ], [ 1, 0 ] ];> >if> (n == 0)> >return> 0;> > >power(F, n - 1);> >return> F[0][0];> }> function> multiply(F, M)> {> >var> x = F[0][0] * M[0][0] + F[0][1] * M[1][0];> >var> y = F[0][0] * M[0][1] + F[0][1] * M[1][1];> >var> z = F[1][0] * M[0][0] + F[1][1] * M[1][0];> >var> w = F[1][0] * M[0][1] + F[1][1] * M[1][1];> >F[0][0] = x;> >F[0][1] = y;> >F[1][0] = z;> >F[1][1] = w;> }> // Optimized version of power() in method 4 */> function> power(F, n)> > >if> (n == 0> // Driver code> var> n = 9;> document.write(fib(n));> // This code is contributed by gauravrajput1> >
>
>

Sortir
34>

Complexité temporelle : O (Journal n)
Espace auxiliaire : O(Log n) si l'on considère la taille de la pile d'appels de fonction, sinon O(1).


Articles Liés:
Grands nombres de Fibonacci en Java