Étant donné un tableau arr[] ce qui représente un Arbre binaire complet c'est-à-dire si indice je est le mère indice 2*je + 1 est le enfant abandonné et indice 2*i + 2 est le bon enfant. La tâche est de trouver le minimum nombre de échanges nécessaire pour le convertir en Arbre de recherche binaire.
Exemples :
Saisir: arr[] = [5 6 7 8 9 10 11]
Sortir: 3
Explication:
Arbre binaire du tableau donné :
![]()
Échange 1 : échangez le nœud 8 avec le nœud 5.
Échange 2 : échangez le nœud 9 avec le nœud 10.
Échange 3 : échangez le nœud 10 avec le nœud 7.Un minimum de 3 swaps est donc requis pour obtenir l'arbre de recherche binaire ci-dessous :
lancer SQL![]()
Saisir: arr[] = [1 2 3]
Sortir: 1
Explication:
Arbre binaire du tableau donné :tranche Java![]()
Après avoir échangé le nœud 1 avec le nœud 2, obtenez l'arbre de recherche binaire ci-dessous :
![]()
Approche:
C++L'idée est d'utiliser le fait que parcours dans l'ordre de Arbre de recherche binaire est dans croissant ordre de leur valeur.
Alors trouve le parcours dans l'ordre de l'arbre binaire et stockez-le dans le tableau et essaie de trier le tableau. Le nombre minimum d'échanges requis pour trier le tableau sera la réponse.
// C++ program for Minimum swap required // to convert binary tree to binary search tree #include using namespace std; // Function to perform inorder traversal of the binary tree // and store it in vector v void inorder(vector<int>& arr vector<int>& inorderArr int index) { int n = arr.size(); // If index is out of bounds return if (index >= n) return; // Recursively visit left subtree inorder(arr inorderArr 2 * index + 1); // Store current node value in vector inorderArr.push_back(arr[index]); // Recursively visit right subtree inorder(arr inorderArr 2 * index + 2); } // Function to calculate minimum swaps // to sort inorder traversal int minSwaps(vector<int>& arr) { int n = arr.size(); vector<int> inorderArr; // Get the inorder traversal of the binary tree inorder(arr inorderArr 0); // Create an array of pairs to store value // and original index vector<pair<int int>> t(inorderArr.size()); int ans = 0; // Store the value and its index for (int i = 0; i < inorderArr.size(); i++) t[i] = {inorderArr[i] i}; // Sort the pair array based on values // to get BST order sort(t.begin() t.end()); // Find minimum swaps by detecting cycles for (int i = 0; i < t.size(); i++) { // If the element is already in the // correct position continue if (i == t[i].second) continue; // Otherwise perform swaps until the element // is in the right place else { // Swap elements to correct positions swap(t[i].first t[t[i].second].first); swap(t[i].second t[t[i].second].second); } // Check if the element is still not // in the correct position if (i != t[i].second) --i; // Increment swap count ans++; } return ans; } int main() { vector<int> arr = { 5 6 7 8 9 10 11 }; cout << minSwaps(arr) << endl; }
Java // Java program for Minimum swap required // to convert binary tree to binary search tree import java.util.Arrays; class GfG { // Function to perform inorder traversal of the binary tree // and store it in an array static void inorder(int[] arr int[] inorderArr int index int[] counter) { int n = arr.length; // Base case: if index is out of bounds return if (index >= n) return; // Recursively visit left subtree inorder(arr inorderArr 2 * index + 1 counter); // Store current node value in the inorder array inorderArr[counter[0]] = arr[index]; counter[0]++; // Recursively visit right subtree inorder(arr inorderArr 2 * index + 2 counter); } // Function to calculate minimum swaps // to sort inorder traversal static int minSwaps(int[] arr) { int n = arr.length; int[] inorderArr = new int[n]; int[] counter = new int[1]; // Get the inorder traversal of the binary tree inorder(arr inorderArr 0 counter); // Create an array of pairs to store the value // and its original index int[][] t = new int[n][2]; int ans = 0; // Store the value and its original index for (int i = 0; i < n; i++) { t[i][0] = inorderArr[i]; t[i][1] = i; } // Sort the array based on values to get BST order Arrays.sort(t (a b) -> Integer.compare(a[0] b[0])); // Find minimum swaps by detecting cycles boolean[] visited = new boolean[n]; // Iterate through the array to find cycles for (int i = 0; i < n; i++) { // If the element is already visited or in // the correct place continue if (visited[i] || t[i][1] == i) continue; // Start a cycle and find the number of // nodes in the cycle int cycleSize = 0; int j = i; while (!visited[j]) { visited[j] = true; j = t[j][1]; cycleSize++; } // If there is a cycle we need (cycleSize - 1) // swaps to sort the cycle if (cycleSize > 1) { ans += (cycleSize - 1); } } // Return the total number of swaps return ans; } public static void main(String[] args) { int[] arr = {5 6 7 8 9 10 11}; System.out.println(minSwaps(arr)); } }
Python # Python program for Minimum swap required # to convert binary tree to binary search tree # Function to perform inorder traversal of the binary tree # and store it in an array def inorder(arr inorderArr index): # If index is out of bounds return n = len(arr) if index >= n: return # Recursively visit left subtree inorder(arr inorderArr 2 * index + 1) # Store current node value in inorderArr inorderArr.append(arr[index]) # Recursively visit right subtree inorder(arr inorderArr 2 * index + 2) # Function to calculate minimum swaps # to sort inorder traversal def minSwaps(arr): inorderArr = [] # Get the inorder traversal of the binary tree inorder(arr inorderArr 0) # Create a list of pairs to store value and original index t = [(inorderArr[i] i) for i in range(len(inorderArr))] ans = 0 # Sort the list of pairs based on values # to get BST order t.sort() # Initialize visited array visited = [False] * len(t) # Find minimum swaps by detecting cycles for i in range(len(t)): # If already visited or already in the # correct place skip if visited[i] or t[i][1] == i: continue # Start a cycle and find the number of # nodes in the cycle cycleSize = 0 j = i # Process all elements in the cycle while not visited[j]: visited[j] = True j = t[j][1] cycleSize += 1 # If there is a cycle of size `cycle_size` we # need `cycle_size - 1` swaps if cycleSize > 1: ans += (cycleSize - 1) # Return total number of swaps return ans if __name__ == '__main__': arr = [5 6 7 8 9 10 11] print(minSwaps(arr))
C# // C# program for Minimum swap required // to convert binary tree to binary search tree using System; using System.Linq; class GfG { // Function to perform inorder traversal of the binary tree // and store it in an array static void Inorder(int[] arr int[] inorderArr int index ref int counter) { int n = arr.Length; // Base case: if index is out of bounds return if (index >= n) return; // Recursively visit left subtree Inorder(arr inorderArr 2 * index + 1 ref counter); // Store current node value in inorderArr inorderArr[counter] = arr[index]; counter++; // Recursively visit right subtree Inorder(arr inorderArr 2 * index + 2 ref counter); } // Function to calculate minimum // swaps to sort inorder traversal static int MinSwaps(int[] arr) { int n = arr.Length; int[] inorderArr = new int[n]; int counter = 0; // Get the inorder traversal of the binary tree Inorder(arr inorderArr 0 ref counter); // Create an array of pairs to store value // and original index var t = new (int int)[n]; for (int i = 0; i < n; i++) { t[i] = (inorderArr[i] i); } // Sort the array based on values to get BST order Array.Sort(t (a b) => a.Item1.CompareTo(b.Item1)); // Initialize visited array bool[] visited = new bool[n]; int ans = 0; // Find minimum swaps by detecting cycles for (int i = 0; i < n; i++) { // If already visited or already in // the correct place skip if (visited[i] || t[i].Item2 == i) continue; // Start a cycle and find the number // of nodes in the cycle int cycleSize = 0; int j = i; // Process all elements in the cycle while (!visited[j]) { visited[j] = true; j = t[j].Item2; cycleSize++; } // If there is a cycle of size `cycle_size` we // need `cycle_size - 1` swaps if (cycleSize > 1) { ans += (cycleSize - 1); } } // Return total number of swaps return ans; } static void Main(string[] args) { int[] arr = { 5 6 7 8 9 10 11 }; Console.WriteLine(MinSwaps(arr)); } }
JavaScript // Javascript program for Minimum swap required // to convert binary tree to binary search tree // Inorder traversal to get values in sorted order function inorder(arr inorderArr index) { // If index is out of bounds return if (index >= arr.length) return; // Recursively visit left subtree inorder(arr inorderArr 2 * index + 1); // Store current node value in array inorderArr.push(arr[index]); // Recursively visit right subtree inorder(arr inorderArr 2 * index + 2); } // Function to calculate minimum swaps to sort inorder // traversal function minSwaps(arr) { let inorderArr = []; // Get the inorder traversal of the binary tree inorder(arr inorderArr 0); // Create an array of pairs to store value and original // index let t = inorderArr.map((val i) => [val i]); let ans = 0; // Sort the pair array based on values to get BST order t.sort((a b) => a[0] - b[0]); // Find minimum swaps by detecting cycles let visited = Array(arr.length) .fill(false); for (let i = 0; i < t.length; i++) { // If the element is already in the correct // position continue if (visited[i] || t[i][1] === i) continue; // Otherwise perform swaps until the element is in // the right place let cycleSize = 0; let j = i; while (!visited[j]) { visited[j] = true; j = t[j][1]; cycleSize++; } // If there is a cycle we need (cycleSize - 1) // swaps to sort the cycle if (cycleSize > 1) { ans += (cycleSize - 1); } } // Return total number of swaps return ans; } let arr = [ 5 6 7 8 9 10 11 ]; console.log(minSwaps(arr));
Sortir
3
Complexité temporelle : O(n*logn) où n est le nombre d'éléments dans le tableau.
Espace auxiliaire : O(n) car il utilise de l'espace supplémentaire pour le tableau
Exercice: Pouvons-nous étendre cela à un arbre binaire normal, c'est-à-dire un arbre binaire représenté à l'aide de pointeurs gauche et droit et pas nécessairement complet ?
Créer un quiz