logo

LCM des n premiers nombres naturels

Étant donné un nombre n tel que 1<= N <= 10^6 the Task is to Find the LCM of First n Natural Numbers. 

Exemples :  

Input : n = 5 Output : 60 Input : n = 6 Output : 60 Input : n = 7 Output : 420 

Nous vous recommandons fortement de cliquer ici et de vous entraîner avant de passer à la solution.

Nous avons discuté d'une solution simple dans l'article ci-dessous. 
Le plus petit nombre divisible par les n premiers nombres
La solution ci-dessus fonctionne bien pour une seule entrée. Mais si nous avons plusieurs entrées, c'est une bonne idée d'utiliser Tamis d'Ératosthène pour stocker tous les facteurs premiers. Comme nous le savons, si LCM(a b) = X, tout facteur premier de a ou b sera également le facteur premier de « X ».  



  1. Initialiser la variable lcm avec 1
  2. Générez un tamis d'Eratosthène (le vecteur bool isPrime) de longueur 10 ^ 6 (idéalement doit être égal au nombre de chiffres en factorielle)
  3. Maintenant, pour chaque nombre du vecteur booléen isPrime si le nombre est premier (isPrime[i] est vrai), trouvez le nombre maximum qui est inférieur au nombre donné et égal à la puissance du nombre premier.
  4. Multipliez ensuite ce nombre par la variable lcm.
  5. Répétez les étapes 3 et 4 jusqu'à ce que le nombre premier soit inférieur au nombre donné.

Illustration:  

For example if n = 10 8 will be the first number which is equal to 2^3 then 9 which is equal to 3^2 then 5 which is equal to 5^1 then 7 which is equal to 7^1 Finally we multiply those numbers 8*9*5*7 = 2520

Vous trouverez ci-dessous la mise en œuvre de l’idée ci-dessus.  

C++
// C++ program to find LCM of First N Natural Numbers. #include    #define MAX 100000 using namespace std; vector<bool> isPrime (MAX true); // utility function for sieve of sieve of Eratosthenes void sieve() {    for (int i = 2; i * i <= MAX; i++)  {  if (isPrime[i] == true)  for (int j = i*i; j<= MAX; j+=i)  isPrime[j] = false;  } } // Function to find LCM of first n Natural Numbers long long LCM(int n) {  long long lcm = 1;  int i=2;   while(i<=n) {  if(isPrime[i]){  int pp = i;  while (pp * i <= n)  pp = pp * i;  lcm *= pp;  }  i++;  }  return lcm; } // Driver code int main() {  // build sieve  sieve();  int N = 7;  // Function call  cout << LCM(N);  return 0; } 
Java
// Java program to find LCM of First N Natural Numbers. import java.util.*; class GFG  {  static int MAX = 100000;  // array to store all prime less than and equal to 10^6  static ArrayList<Integer> primes  = new ArrayList<Integer>();  // utility function for sieve of sieve of Eratosthenes  static void sieve()  {  boolean[] isComposite = new boolean[MAX + 1];  for (int i = 2; i * i <= MAX; i++)   {  if (isComposite[i] == false)  for (int j = 2; j * i <= MAX; j++)  isComposite[i * j] = true;  }  // Store all prime numbers in vector primes[]  for (int i = 2; i <= MAX; i++)  if (isComposite[i] == false)  primes.add(i);  }  // Function to find LCM of first n Natural Numbers  static long LCM(int n)  {  long lcm = 1;  for (int i = 0;  i < primes.size() && primes.get(i) <= n;   i++)   {  // Find the highest power of prime primes[i]  // that is less than or equal to n  int pp = primes.get(i);  while (pp * primes.get(i) <= n)  pp = pp * primes.get(i);  // multiply lcm with highest power of prime[i]  lcm *= pp;  lcm %= 1000000007;  }  return lcm;  }  // Driver code  public static void main(String[] args)  {  sieve();  int N = 7;    // Function call  System.out.println(LCM(N));  } } // This code is contributed by mits 
Python3
# Python3 program to find LCM of # First N Natural Numbers. MAX = 100000 # array to store all prime less # than and equal to 10^6 primes = [] # utility function for # sieve of Eratosthenes def sieve(): isComposite = [False]*(MAX+1) i = 2 while (i * i <= MAX): if (isComposite[i] == False): j = 2 while (j * i <= MAX): isComposite[i * j] = True j += 1 i += 1 # Store all prime numbers in # vector primes[] for i in range(2 MAX+1): if (isComposite[i] == False): primes.append(i) # Function to find LCM of # first n Natural Numbers def LCM(n): lcm = 1 i = 0 while (i < len(primes) and primes[i] <= n): # Find the highest power of prime # primes[i] that is less than or # equal to n pp = primes[i] while (pp * primes[i] <= n): pp = pp * primes[i] # multiply lcm with highest # power of prime[i] lcm *= pp lcm %= 1000000007 i += 1 return lcm # Driver code sieve() N = 7 # Function call print(LCM(N)) # This code is contributed by mits 
C#
// C# program to find LCM of First N // Natural Numbers. using System.Collections; using System; class GFG {  static int MAX = 100000;  // array to store all prime less than  // and equal to 10^6  static ArrayList primes = new ArrayList();  // utility function for sieve of  // sieve of Eratosthenes  static void sieve()  {  bool[] isComposite = new bool[MAX + 1];  for (int i = 2; i * i <= MAX; i++)   {  if (isComposite[i] == false)  for (int j = 2; j * i <= MAX; j++)  isComposite[i * j] = true;  }  // Store all prime numbers in vector primes[]  for (int i = 2; i <= MAX; i++)  if (isComposite[i] == false)  primes.Add(i);  }  // Function to find LCM of first  // n Natural Numbers  static long LCM(int n)  {  long lcm = 1;  for (int i = 0;  i < primes.Count && (int)primes[i] <= n;   i++)   {  // Find the highest power of prime primes[i]  // that is less than or equal to n  int pp = (int)primes[i];  while (pp * (int)primes[i] <= n)  pp = pp * (int)primes[i];  // multiply lcm with highest power of prime[i]  lcm *= pp;  lcm %= 1000000007;  }  return lcm;  }  // Driver code  public static void Main()  {  sieve();  int N = 7;    // Function call  Console.WriteLine(LCM(N));  } } // This code is contributed by mits 
JavaScript
<script>  // Javascript program to find LCM of First N  // Natural Numbers.    let MAX = 100000;    // array to store all prime less than  // and equal to 10^6  let primes = [];    // utility function for sieve of  // sieve of Eratosthenes  function sieve()  {  let isComposite = new Array(MAX + 1);  isComposite.fill(false);  for (let i = 2; i * i <= MAX; i++)  {  if (isComposite[i] == false)  for (let j = 2; j * i <= MAX; j++)  isComposite[i * j] = true;  }    // Store all prime numbers in vector primes[]  for (let i = 2; i <= MAX; i++)  if (isComposite[i] == false)  primes.push(i);  }    // Function to find LCM of first  // n Natural Numbers  function LCM(n)  {  let lcm = 1;  for (let i = 0;  i < primes.length && primes[i] <= n;  i++)  {  // Find the highest power of prime primes[i]  // that is less than or equal to n  let pp = primes[i];  while (pp * primes[i] <= n)  pp = pp * primes[i];    // multiply lcm with highest power of prime[i]  lcm *= pp;  lcm %= 1000000007;  }  return lcm;  }    sieve();  let N = 7;  // Function call  document.write(LCM(N)); // This code is contributed by decode2207. </script> 
PHP
 // PHP program to find LCM of // First N Natural Numbers. $MAX = 100000; // array to store all prime less // than and equal to 10^6 $primes = array(); // utility function for // sieve of Eratosthenes function sieve() { global $MAX $primes; $isComposite = array_fill(0 $MAX false); for ($i = 2; $i * $i <= $MAX; $i++) { if ($isComposite[$i] == false) for ($j = 2; $j * $i <= $MAX; $j++) $isComposite[$i * $j] = true; } // Store all prime numbers in // vector primes[] for ($i = 2; $i <= $MAX; $i++) if ($isComposite[$i] == false) array_push($primes $i); } // Function to find LCM of  // first n Natural Numbers function LCM($n) { global $MAX $primes; $lcm = 1; for ($i = 0; $i < count($primes) && $primes[$i] <= $n; $i++) { // Find the highest power of prime  // primes[i] that is less than or  // equal to n $pp = $primes[$i]; while ($pp * $primes[$i] <= $n) $pp = $pp * $primes[$i]; // multiply lcm with highest // power of prime[i] $lcm *= $pp; $lcm %= 1000000007; } return $lcm; } // Driver code sieve(); $N = 7; // Function call echo LCM($N); // This code is contributed by mits ?> 

Sortir
420

Complexité temporelle : Sur2
Espace auxiliaire : Sur)

Une autre approche :

 L'idée est que si le nombre est inférieur à 3, renvoie le nombre. Si le nombre est supérieur à 2, trouvez le LCM de nn-1

  • Disons x=LCM(nn-1)
  • encore une fois x=LCM(xn-2)
  • encore une fois x=LCM(xn-3) ...
  • .
  • .
  • encore une fois x=LCM(x1) ...

maintenant le résultat est x.

Pour trouver LCM(ab), nous utilisons une fonction hcf(ab) qui renverra HCF de (ab)

Nous savons que LCM(ab)= (a*b)/HCF(ab)

Illustration: 

For example if n = 7 function call lcm(76) now lets say a=7  b=6 Now  b!= 1 Hence a=lcm(76) = 42 and b=6-1=5 function call lcm(425) a=lcm(425) = 210 and b=5-1=4 function call lcm(2104) a=lcm(2104) = 420 and b=4-1=3 function call lcm(4203) a=lcm(4203) = 420 and b=3-1=2 function call lcm(4202) a=lcm(4202) = 420 and b=2-1=1 Now b=1 Hence return a=420

Vous trouverez ci-dessous la mise en œuvre de l'approche ci-dessus

C++
// C++ program to find LCM of First N Natural Numbers. #include    using namespace std; // to calculate hcf int hcf(int a int b) {  if (b == 0)  return a;  return hcf(b a % b); } int findlcm(int aint b) {  if (b == 1)    // lcm(ab)=(a*b)/hcf(ab)  return a;     // assign a=lcm of nn-1  a = (a * b) / hcf(a b);     // b=b-1  b -= 1;   return findlcm(a b); } // Driver code int main() {  int n = 7;  if (n < 3)  cout << n; // base case  else    // Function call  // pass nn-1 in function to find LCM of first n natural  // number  cout << findlcm(n n - 1);    return 0; } // contributed by ajaykr00kj 
Java
// Java program to find LCM of First N Natural Numbers public class Main {  // to calculate hcf  static int hcf(int a int b)  {  if (b == 0)  return a;  return hcf(b a % b);  }  static int findlcm(int aint b)  {  if (b == 1)  // lcm(ab)=(a*b)/hcf(ab)  return a;   // assign a=lcm of nn-1  a = (a * b) / hcf(a b);   // b=b-1  b -= 1;   return findlcm(a b);  }  // Driver code.  public static void main(String[] args)   {  int n = 7;  if (n < 3)  System.out.print(n); // base case  else  // Function call  // pass nn-1 in function to find LCM of first n natural  // number  System.out.print(findlcm(n n - 1));  } } // This code is contributed by divyeshrabadiya07. 
Python3
# Python3 program to find LCM  # of First N Natural Numbers. # To calculate hcf def hcf(a b): if (b == 0): return a return hcf(b a % b) def findlcm(a b): if (b == 1): # lcm(ab)=(a*b)//hcf(ab) return a # Assign a=lcm of nn-1 a = (a * b) // hcf(a b) # b=b-1 b -= 1 return findlcm(a b) # Driver code n = 7 if (n < 3): print(n) else: # Function call # pass nn-1 in function # to find LCM of first n  # natural number print(findlcm(n n - 1)) # This code is contributed by Shubham_Singh 
C#
// C# program to find LCM of First N Natural Numbers. using System; class GFG {  // to calculate hcf  static int hcf(int a int b)  {  if (b == 0)  return a;  return hcf(b a % b);  }  static int findlcm(int aint b)  {  if (b == 1)  // lcm(ab)=(a*b)/hcf(ab)  return a;   // assign a=lcm of nn-1  a = (a * b) / hcf(a b);   // b=b-1  b -= 1;   return findlcm(a b);  }  // Driver code  static void Main() {  int n = 7;  if (n < 3)  Console.Write(n); // base case  else  // Function call  // pass nn-1 in function to find LCM of first n natural  // number  Console.Write(findlcm(n n - 1));  } } // This code is contributed by divyesh072019. 
JavaScript
<script>  // Javascript program to find LCM of First N Natural Numbers.    // to calculate hcf  function hcf(a b)  {  if (b == 0)  return a;  return hcf(b a % b);  }  function findlcm(ab)  {  if (b == 1)  // lcm(ab)=(a*b)/hcf(ab)  return a;  // assign a=lcm of nn-1  a = (a * b) / hcf(a b);  // b=b-1  b -= 1;  return findlcm(a b);  }    let n = 7;  if (n < 3)  document.write(n); // base case  else    // Function call  // pass nn-1 in function to find LCM of first n natural  // number  document.write(findlcm(n n - 1));   </script> 

Sortir
420

Complexité temporelle : O (n journal n)
Espace auxiliaire : O(1)