logo

Graphique Java

En Java, le Graphique est une structure de données qui stocke certaines données. La notion de graphique a été volé aux mathématiques qui répondent aux besoins du domaine informatique. Il représente un réseau qui relie plusieurs points entre eux. Dans cette section, nous apprendrons en détail la structure des données Java Graph. Nous apprendrons également le types de graphiques , leur mise en œuvre , et traversée sur le graphique.

Graphique

UN graphique est une terminologie graphique

Sommet: Les sommets sont les points sur lesquels les joints bordent. Il représente les données. Il est également connu sous le nom de nœud. Il est désigné par un cercle et doit être étiqueté. Pour construire un graphe, il doit y avoir au moins un nœud. Par exemple, maison, arrêt de bus, etc.

Bord: Une arête est une ligne qui relie deux sommets. Il représente la relation entre les sommets. Les bords sont indiqués par une ligne. Par exemple, un chemin menant à l'arrêt de bus depuis votre maison.

Poids: Il est étiqueté jusqu'au bord. Par exemple, la distance entre deux villes est de 100 km, alors la distance est appelée poids pour le bord.

Chemin: Le chemin est un moyen d'atteindre une destination à partir du point initial d'une séquence.

j'essaie d'entrer

Types de graphiques

    Graphique pondéré :Dans un graphique pondéré, chaque arête contient des données (poids) tel que la distance, le poids, la taille, etc. Il est noté w(e). Il est utilisé pour calculer le coût de déplacement d’un sommet à un autre. La figure suivante représente un graphique pondéré.
    Graphique Java Graphique non pondéré :Un graphique dans lequel les arêtes ne sont associées à aucune valeur est appelé un graphique non pondéré. La figure suivante représente un graphique non pondéré.
    Graphique Java Graphique dirigé:Un graphe dans lequel les arêtes représentent la direction est appelé graphe orienté. Dans un graphique orienté, nous utilisons des flèches au lieu de lignes (bords). La direction indique la manière d'atteindre d'un nœud à un autre nœud. Notez que dans un graphe orienté, nous pouvons nous déplacer soit dans un sens, soit dans les deux sens. La figure suivante représente un graphe orienté.
    Graphique Java Graphique non orienté :Un graphe dont les arêtes sont bidirectionnelles est appelé graphe non orienté. Dans un graphe non orienté, nous pouvons parcourir dans n’importe quelle direction. Notez que nous pouvons utiliser le même chemin de retour par lequel nous avons parcouru. Dans le graphe orienté, nous ne pouvons pas revenir du même chemin.
    Graphique Java Graphique connecté :Un graphe est dit connexe s’il existe au moins un chemin entre chaque paire de sommets. Notez qu’un graphe avec seulement un sommet est un graphe connexe.
    Graphique Java
    Il existe deux types de graphiques connectés.
      Graphique connecté hebdomadaire :Un graphe dans lequel les nœuds ne peuvent pas être visités par un seul chemin est appelé graphe connecté hebdomadaire.
      Graphique Java Graphique fortement connecté :Un graphe dans lequel les nœuds peuvent être visités par un seul chemin est appelé graphe fortement connecté.
      Graphique Java
    Graphique déconnecté :Un graphe est dit déconnecté s’il n’y a pas de chemin entre une paire de sommets. On parle alors de graphe déconnecté. Un graphique déconnecté peut être constitué de deux ou plusieurs graphiques connectés.
    Graphique Java Graphique multiple :Un graphe comportant plusieurs arêtes reliant la même paire de nœuds. La figure suivante représente un multi-graphe.
    Graphique Java Graphique dense :Un graphe dans lequel le nombre d’arêtes est proche du nombre maximal d’arêtes, le graphe est appelé graphe dense. La figure suivante représente un graphique dense.
    Graphique Java Graphique clairsemé :Un graphe dans lequel le nombre d'arêtes est proche du nombre minimal d'arêtes, le graphe est appelé graphe clairsemé. Il peut s'agir d'un graphique déconnecté. La figure suivante représente un graphique clairsemé.
    Graphique Java

Implémentation de graphiques Java

Pour la mise en œuvre de graphiques dans Java, nous utiliserons le Générique classe. Pour créer un objet de classe Java Generic, nous utilisons la syntaxe suivante :

 BaseType obj = new BaseType (); 

N'oubliez pas que nous ne pouvons pas utiliser de type primitif pour le type de paramètre.

méthode égale java

Créons un programme Java qui implémente Graph.

GraphImplementation.java

 import java.util.*; class Graph { //creating an object of the Map class that stores the edges of the graph private Map<t, list> map = new HashMap(); //the method adds a new vertex to the graph public void addNewVertex(T s) { map.put(s, new LinkedList()); } //the method adds an edge between source and destination public void addNewEdge(T source, T destination, boolean bidirectional) { // if (!map.containsKey(source)) addNewVertex(source); if (!map.containsKey(destination)) addNewVertex(destination); map.get(source).add(destination); if (bidirectional == true) { map.get(destination).add(source); } } //the method counts the number of vertices public void countVertices() { System.out.println(&apos;Total number of vertices: &apos;+ map.keySet().size()); } //the method counts the number of edges public void countEdges(boolean bidirection) { //variable to store number of edges int count = 0; for (T v : map.keySet()) { count = count + map.get(v).size(); } if (bidirection == true) { count = count / 2; } System.out.println(&apos;Total number of edges: &apos;+ count); } //checks a graph has vertex or not public void containsVertex(T s) { if (map.containsKey(s)) { System.out.println(&apos;The graph contains &apos;+ s + &apos; as a vertex.&apos;); } else { System.out.println(&apos;The graph does not contain &apos;+ s + &apos; as a vertex.&apos;); } } //checks a graph has edge or not //where s and d are the two parameters that represent source(vertex) and destination (vertex) public void containsEdge(T s, T d) { if (map.get(s).contains(d)) { System.out.println(&apos;The graph has an edge between &apos;+ s + &apos; and &apos; + d + &apos;.&apos;); } else { System.out.println(&apos;There is no edge between &apos;+ s + &apos; and &apos; + d + &apos;.&apos;); } } //prints the adjacencyS list of each vertex //here we have overridden the toString() method of the StringBuilder class @Override public String toString() { StringBuilder builder = new StringBuilder(); //foreach loop that iterates over the keys for (T v : map.keySet()) { builder.append(v.toString() + &apos;: &apos;); //foreach loop for getting the vertices for (T w : map.get(v)) { builder.append(w.toString() + &apos; &apos;); } builder.append(&apos;
&apos;); } return (builder.toString()); } } //creating a class in which we have implemented the driver code public class GraphImplementation { public static void main(String args[]) { //creating an object of the Graph class Graph graph=new Graph(); //adding edges to the graph graph.addNewEdge(0, 1, true); graph.addNewEdge(0, 4, true); graph.addNewEdge(1, 2, true); graph.addNewEdge(1, 3, false); graph.addNewEdge(1, 4, true); graph.addNewEdge(2, 3, true); graph.addNewEdge(2, 4, true); graph.addNewEdge(3, 0, true); graph.addNewEdge(2, 0, true); //prints the adjacency matrix that represents the graph System.out.println(&apos;Adjacency List for the graph:
&apos;+ graph.toString()); //counts the number of vertices in the graph graph.countVertices(); //counts the number of edges in the graph graph.countEdges(true); //checks whether an edge is present or not between the two specified vertices graph.containsEdge(3, 4); graph.containsEdge(2, 4); //checks whether vertex is present or not graph.containsVertex(3); graph.containsVertex(5); } } </t,>

Sortir:

Graphique Java

Implémentation du graphe dirigé

DirectedGraph.java

 import java.util.*; //Creating a class named Edge that stores the edges of the graph class Edge { //the variable source and destination represent the vertices int s, d; //creating a constructor of the class Edge Edge(int s, int d) { this.s = s; this.d = d; } } //a class to represent a graph object class Graph { //note that we have created an adjacency list (i.e. List of List) List<list> adjlist = new ArrayList(); //creating a constructor of the class Graph that construct a graph public Graph(List edges) { int n = 0; //foreach loop that iterates over the edge for (Edge e: edges) { //determines the maximum numbered vertex n = Integer.max(n, Integer.max(e.s, e.d)); } //reserve the space for the adjacency list for (int i = 0; i <= 1 n; i++) { adjlist.add(i, new arraylist()); } adds the edges to undirected graph for (edge current: edges) allocate node in adjacency list from source destination adjlist.get(current.s).add(current.d); function print representation of a public static void showgraph(graph graph) int s="0;" determines size n="graph.adjlist.size();" while (s ' + d ')	'); system.out.println(); increments by s++; implementing driver code class directedgraph main (string args[]) creating edge(0, 1), edge(1, 2), edge(2, 4), edge(4, 1),new edge(3, 5), edge(5, 1)); construct given graph(edges); prints that represents graph.showgraph(graph); < pre> <p> <strong>Output:</strong> </p> <img src="//techcodeview.com/img/java-tutorial/19/java-graph-13.webp" alt="Java Graph"> <h2>Implementation of Weighted Graph</h2> <p> <strong>WeightedGraph.java</strong> </p> <pre> import java.util.*; //the class stores the edges of the graph class Edge { int s, d, w; //creating a constructor of the class Edge Edge(int src, int dest, int weight) { this.s = src; this.d = dest; this.w = weight; } } //a class to store adjacency list nodes class Node { int value, weight; //creating a constructor of the class Vertex Node(int value, int weight) { this.value = value; this.weight = weight; } //overrides the toString() method @Override public String toString() { return this.value + &apos; (&apos; + this.weight + &apos;)&apos;; } } //a class to represent a graph object class Graph { //note that we have created an adjacency list (i.e. List of List) List<list> adjlist = new ArrayList(); //creating a constructor of the class Graph that creates graph public Graph(List edges) { //find the maximum numbered vertex int n = 0; //iterates over the edges of the graph for (Edge e: edges) { //determines the maximum numbered vertex n = Integer.max(n, Integer.max(e.s, e.d)); } //reserve the space for the adjacency list for (int i = 0; i <= 1 n; i++) { adjlist.add(i, new arraylist()); } adds the edges to undirected graph for (edge e: edges) creating a node (from source destination) in adjacency list adjlist.get(e.s).add(new node(e.d, e.w)); uncomment following statement adj.get(e.dest).add(new node(e.src, e.weight)); method that prints of public static void printgraph(graph graph) int src="0;" n="graph.adjlist.size();" system.out.printf('adjacency is: '); while (src %s	', src, edge); system.out.println(); increments by src++; implementing driver code class weightedgraph main (string args[]) with their associated weight edge(1, 4, 3), edge(4, 2, 5), edge(2, 5, 10), edge(5, 1, 6), edge(3, 9), 1), 2)); creates declared above graph(edges); corresponding graph.printgraph(graph); < pre> <p> <strong>Output:</strong> </p> <img src="//techcodeview.com/img/java-tutorial/19/java-graph-14.webp" alt="Java Graph"> <h2>Graph Traversal</h2> <p>Traversal over the graph means visit each and every vertex and edge at least once. To traverse over the graph, Graph data structure provides two algorithms:</p> <ul> <li>Depth-First Search (DFS)</li> <li>Breadth-First Search (DFS)</li> </ul> <h3>Depth-First Search (DFS)</h3> <p> <a href="/dfs-algorithm">DFS algorithm</a> is a recursive algorithm that is based on the backtracking concept. The algorithm starts from the initial node and searches in depth until it finds the goal node (a node that has no child). Backtracking allows us to move in the backward direction on the same path from which we have traversed in the forward direction.</p> <p>Let&apos;s implement the DFS algorithm in a Java program.</p> <p> <strong>DepthFirstSearch.java</strong> </p> <pre> import java.io.*; import java.util.*; //creates an undirected graph class Graph { //stores the number of vertices private int Vertices; //creates a linked list for the adjacency list of the graph private LinkedList adjlist[]; //creating a constructor of the Graph class Graph(int count_v) { //assigning the number of vertices to the passed parameter Vertices = count_v; adjlist = new LinkedList[count_v]; //loop for creating the adjacency lists for (int i=0; i<count_v; 3 10 ++i) adjlist[i]="new" linkedlist(); } method that adds a new edge to the graph void addnewedge(int v, int w) { adjlist[v].add(w); add w v's list. logic of dfs traversal starts from root node traversaldfs(int boolean vnodelist[]) if current (root node) is visited, it vnodelist vnodelist[v]="true;" system.out.print(v+' '); detrmines negihboring nodes iterates over list iterator i="adjlist[v].listIterator();" while (i.hasnext()) returns next element in iteration and store variable n (!vnodelist[n]) calling function performs depth first traversaldfs(n, vnodelist); dfs(int v) creates an array type for visited initially all are unvisited visited[]="new" boolean[vertices]; call recursive traversaldfs() traversaldfs(v, visited); implementing driver code public class depthfirstsearch static main(string args[]) having vertices g="new" graph(10); edges g.addnewedge(1, 2); g.addnewedge(2, 3); g.addnewedge(3, 4); g.addnewedge(4, 5); g.addnewedge(5, 7); 6); print sequencnce which bfs done system.out.println('depth-first is: (as g.dfs(1); < pre> <p> <strong>Output:</strong> </p> <img src="//techcodeview.com/img/java-tutorial/19/java-graph-15.webp" alt="Java Graph"> <h3>Breadth First Search (BFS)</h3> <p> <a href="/bfs-algorithm">BFS algorithm</a> is the most common approach to traverse over the graph. The traversal starts from the source node and scans its neighboring nodes (child of the current node). In short, traverse horizontally and visit all the nodes of the current layer. After that, move to the next layer and perform the same.</p> <p>Let&apos;s implement the BFS algorithm in a Java program.</p> <p> <strong>BreadthFirstSearch.java</strong> </p> <pre> import java.io.*; import java.util.*; //creates an undirected graph class Graph { //stores the number of vertices private int vertices; //creates a linked list for the adjacency list of the graph private LinkedList adjlist[]; //creating a constructor of the Graph class Graph(int count_v) { //assigning the number of vertices to the passed parameter vertices = count_v; adjlist = new LinkedList[count_v]; //loop for creating the adjacency lists for (int i=0; i<count_v; 10 ++i) adjlist[i]="new" linkedlist(); } method that adds a new edge to the graph void addnewedge(int v, int w) { adjlist[v].add(w); traversal starts from root node traversalbfs(int rnode) creates an array of boolean type for visited initially all nodes are unvisited visitednode[]="new" boolean[vertices]; creating another list storing linkedlist vnodelist="new" if current (root node) is visited, add it visitednode[rnode]="true;" inserts into vnodelist.add(rnode); while loop executes until we have (vnodelist.size() !="0)" deque entry queue and process poll() retrieves removes head (first element) this rnode="vnodelist.poll();" system.out.print(rnode+' '); detrmines negihboring iterates over iterator i="adjlist[rnode].listIterator();" (i.hasnext()) returns next element in iteration store variable n checks or not (!visitednode[n]) above if-statement true, visits visitednode[n]="true;" vnodelist.add(n); implementing driver code public class breadthfirstsearch static main(string args[]) having vertices graph(10); edges graph.addnewedge(2, 5); graph.addnewedge(3, graph.addnewedge(1, 2); 4); graph.addnewedge(4, 1); graph.addnewedge(6, graph.addnewedge(5, 6); 3); graph.addnewedge(7, 7); print sequence which bfs execute system.out.println('breadth-first is: graph.traversalbfs(2); < pre> <p> <strong>Output:</strong> </p> <img src="//techcodeview.com/img/java-tutorial/19/java-graph-16.webp" alt="Java Graph"> <hr></count_v;></pre></count_v;></pre></=></list></pre></=></list>