logo

Implémentation de l'algorithme Diffie-Hellman

Algorithme de Diffie-Hellman :

L'algorithme Diffie-Hellman est utilisé pour établir un secret partagé pouvant être utilisé pour des communications secrètes tout en échangeant des données sur un réseau public en utilisant la courbe elliptique pour générer des points et obtenir la clé secrète à l'aide des paramètres.  

  • Par souci de simplicité et de mise en œuvre pratique de l'algorithme, nous ne considérerons que 4 variables, une première P et G (une racine primitive de P) et deux valeurs privées a et b.
  • P et G sont tous deux des numéros accessibles au public. Les utilisateurs (disons Alice et Bob) choisissent les valeurs privées a et b, génèrent une clé et l'échangent publiquement. La personne opposée reçoit la clé et cela génère une clé secrète après quoi elle a la même clé secrète à chiffrer.


L'explication étape par étape est la suivante :  



AliceBob
Clés publiques disponibles = P GClés publiques disponibles = P G
Clé privée sélectionnée = aClé privée sélectionnée = b

Clé générée = 

x = G ^ un mod P

mylivecricket pour le cricket en direct

Clé générée = 



y = G ^ b mod P

L'échange des clés générées a lieu
Clé reçue = ouiclé reçue = x

Clé secrète générée = 

k_a = y^a mod P



boucle de programme Java

Clé secrète générée = 

carte de hachage

k_b = x^b modP

Algébriquement, on peut montrer que 

k_a = k_b

Les utilisateurs disposent désormais d'une clé secrète symétrique à chiffrer

Exemple:  

gestion des exceptions en Java
Step 1: Alice and Bob get public numbers P = 23 G = 9  
Step 2: Alice selected a private key a = 4 and
Bob selected a private key b = 3
Step 3: Alice and Bob compute public values
Alice: x =(9^4 mod 23) = (6561 mod 23) = 6
Bob: y = (9^3 mod 23) = (729 mod 23) = 16
Step 4: Alice and Bob exchange public numbers
Step 5: Alice receives public key y =16 and
Bob receives public key x = 6
Step 6: Alice and Bob compute symmetric keys
Alice: ka = y^a mod p = 65536 mod 23 = 9
Bob: kb = x^b mod p = 216 mod 23 = 9
Step 7: 9 is the shared secret.

Mise en œuvre:   

C++
/* This program calculates the Key for two persons using the Diffie-Hellman Key exchange algorithm using C++ */ #include  #include    using namespace std; // Power function to return value of a ^ b mod P long long int power(long long int a long long int b  long long int P) {  if (b == 1)  return a;  else  return (((long long int)pow(a b)) % P); } // Driver program int main() {  long long int P G x a y b ka kb;  // Both the persons will be agreed upon the  // public keys G and P  P = 23; // A prime number P is taken  cout << 'The value of P : ' << P << endl;  G = 9; // A primitive root for P G is taken  cout << 'The value of G : ' << G << endl;  // Alice will choose the private key a  a = 4; // a is the chosen private key  cout << 'The private key a for Alice : ' << a << endl;  x = power(G a P); // gets the generated key  // Bob will choose the private key b  b = 3; // b is the chosen private key  cout << 'The private key b for Bob : ' << b << endl;  y = power(G b P); // gets the generated key  // Generating the secret key after the exchange  // of keys  ka = power(y a P); // Secret key for Alice  kb = power(x b P); // Secret key for Bob  cout << 'Secret key for the Alice is : ' << ka << endl;  cout << 'Secret key for the Bob is : ' << kb << endl;  return 0; } // This code is contributed by Pranay Arora 
C
/* This program calculates the Key for two persons using the Diffie-Hellman Key exchange algorithm */ #include  #include  // Power function to return value of a ^ b mod P long long int power(long long int a long long int b  long long int P) {  if (b == 1)  return a;  else  return (((long long int)pow(a b)) % P); } // Driver program int main() {  long long int P G x a y b ka kb;  // Both the persons will be agreed upon the  // public keys G and P  P = 23; // A prime number P is taken  printf('The value of P : %lldn' P);  G = 9; // A primitive root for P G is taken  printf('The value of G : %lldnn' G);  // Alice will choose the private key a  a = 4; // a is the chosen private key  printf('The private key a for Alice : %lldn' a);  x = power(G a P); // gets the generated key  // Bob will choose the private key b  b = 3; // b is the chosen private key  printf('The private key b for Bob : %lldnn' b);  y = power(G b P); // gets the generated key  // Generating the secret key after the exchange  // of keys  ka = power(y a P); // Secret key for Alice  kb = power(x b P); // Secret key for Bob  printf('Secret key for the Alice is : %lldn' ka);  printf('Secret Key for the Bob is : %lldn' kb);  return 0; } 
Java
// This program calculates the Key for two persons // using the Diffie-Hellman Key exchange algorithm class GFG {  // Power function to return value of a ^ b mod P  private static long power(long a long b long p)  {  if (b == 1)  return a;  else  return (((long)Math.pow(a b)) % p);  }  // Driver code  public static void main(String[] args)  {  long P G x a y b ka kb;  // Both the persons will be agreed upon the  // public keys G and P  // A prime number P is taken  P = 23;  System.out.println('The value of P:' + P);  // A primitive root for P G is taken  G = 9;  System.out.println('The value of G:' + G);  // Alice will choose the private key a  // a is the chosen private key  a = 4;  System.out.println('The private key a for Alice:'  + a);  // Gets the generated key  x = power(G a P);  // Bob will choose the private key b  // b is the chosen private key  b = 3;  System.out.println('The private key b for Bob:'  + b);  // Gets the generated key  y = power(G b P);  // Generating the secret key after the exchange  // of keys  ka = power(y a P); // Secret key for Alice  kb = power(x b P); // Secret key for Bob  System.out.println('Secret key for the Alice is:'  + ka);  System.out.println('Secret key for the Bob is:'  + kb);  } } // This code is contributed by raghav14 
Python
# Diffie-Hellman Code # Power function to return value of a^b mod P def power(a b p): if b == 1: return a else: return pow(a b) % p # Main function def main(): # Both persons agree upon the public keys G and P # A prime number P is taken P = 23 print('The value of P:' P) # A primitive root for P G is taken G = 9 print('The value of G:' G) # Alice chooses the private key a # a is the chosen private key a = 4 print('The private key a for Alice:' a) # Gets the generated key x = power(G a P) # Bob chooses the private key b # b is the chosen private key b = 3 print('The private key b for Bob:' b) # Gets the generated key y = power(G b P) # Generating the secret key after the exchange of keys ka = power(y a P) # Secret key for Alice kb = power(x b P) # Secret key for Bob print('Secret key for Alice is:' ka) print('Secret key for Bob is:' kb) if __name__ == '__main__': main() 
C#
// C# implementation to calculate the Key for two persons // using the Diffie-Hellman Key exchange algorithm using System; class GFG {  // Power function to return value of a ^ b mod P  private static long power(long a long b long P)  {  if (b == 1)  return a;  else  return (((long)Math.Pow(a b)) % P);  }  public static void Main()  {  long P G x a y b ka kb;  // Both the persons will be agreed upon the  // public keys G and P  P = 23; // A prime number P is taken  Console.WriteLine('The value of P:' + P);  G = 9; // A primitive root for P G is taken  Console.WriteLine('The value of G:' + G);  // Alice will choose the private key a  a = 4; // a is the chosen private key  Console.WriteLine('nThe private key a for Alice:'  + a);  x = power(G a P); // gets the generated key  // Bob will choose the private key b  b = 3; // b is the chosen private key  Console.WriteLine('The private key b for Bob:' + b);  y = power(G b P); // gets the generated key  // Generating the secret key after the exchange  // of keys  ka = power(y a P); // Secret key for Alice  kb = power(x b P); // Secret key for Bob  Console.WriteLine('nSecret key for the Alice is:'  + ka);  Console.WriteLine('Secret key for the Alice is:'  + kb);  } } // This code is contributed by Pranay Arora 
JavaScript
<script> // This program calculates the Key for two persons // using the Diffie-Hellman Key exchange algorithm  // Power function to return value of a ^ b mod P function power(a b p)  {  if (b == 1)  return a;  else  return((Math.pow(a b)) % p); } // Driver code var P G x a y b ka kb; // Both the persons will be agreed upon the // public keys G and P // A prime number P is taken P = 23; document.write('The value of P:' + P + '  
'
); // A primitive root for P G is taken G = 9; document.write('The value of G:' + G + '
'
); // Alice will choose the private key a // a is the chosen private key a = 4; document.write('The private key a for Alice:' + a + '
'
); // Gets the generated key x = power(G a P); // Bob will choose the private key b // b is the chosen private key b = 3; document.write('The private key b for Bob:' + b + '
'
); // Gets the generated key y = power(G b P); // Generating the secret key after the exchange // of keys ka = power(y a P); // Secret key for Alice kb = power(x b P); // Secret key for Bob document.write('Secret key for the Alice is:' + ka + '
'
); document.write('Secret key for the Bob is:' + kb + '
'
); // This code is contributed by Ankita saini </script>

Sortir
The value of P : 23 The value of G : 9 The private key a for Alice : 4 The private key b for Bob : 3 Secret key for the Alice is : 9 Secret key for the Bob is : 9