logo

Algorithme Java de Dijkstra

L'algorithme de Dijkstra est l'un des principaux algorithmes pour trouver le chemin le plus court entre le nœud source et un nœud de destination. Il utilise l’approche gourmande pour trouver le chemin le plus court. Le concept de l'algorithme de Dijkstra est de trouver la distance (chemin) la plus courte à partir du point source et d'ignorer les distances les plus longues lors d'une mise à jour.

Dans cette section, nous mettrons en œuvre le Algorithme de Dijkstra dans le programme Java . Nous discuterons également de son utilisation et de ses limites.

Étapes de l’algorithme de Dijkstra

Étape 1: Tous les nœuds doivent être marqués comme non visités.

formatage de chaîne Java

Étape 2: Tous les nœuds doivent être initialisés avec la distance « infinie » (un grand nombre). Le nœud de départ doit être initialisé à zéro.

Étape 3: Marquez le nœud de départ comme nœud actuel.

Étape 4: À partir du nœud actuel, analysez tous ses voisins qui n'ont pas encore été visités et calculez leurs distances en ajoutant le poids du bord, qui établit la connexion entre le nœud actuel et le nœud voisin à la distance actuelle du nœud actuel.

modèles d'apprentissage automatique

Étape 5 : Maintenant, comparez la distance récemment calculée avec la distance allouée au nœud voisin, et traitez-la comme la distance actuelle du nœud voisin,

Étape 6 : Après cela, les voisins environnants du nœud actuel, qui n'a pas été visité, sont pris en compte et les nœuds actuels sont marqués comme visités.

Étape 7 : Lorsque le nœud final est marqué comme visité, alors l'algorithme a fait son travail ; sinon,

Étape 8 : Choisissez le nœud non visité auquel la distance minimale a été attribuée et traitez-le comme le nouveau nœud actuel. Après cela, recommencez à partir de l'étape 4.

Pseudo-code de l’algorithme de Dijkstra

 Method Dijkstra(G, s): // G is graph, s is source distance[s] -&gt; 0 // Distance from the source to source is always 0 for every vertex vx in the Graph G: // doing the initialization work { if vx ? s { // Unknown distance function from source to each node set to infinity distance[vx] -&gt; infinity } add vx to Queue Q // Initially, all the nodes are in Q } // The while loop Untill the Q is not empty: { // During the first run, this vertex is the source or starting node vx = vertex in Q with the minimum distance[vx] delete vx from Q } // where the neighbor ux has not been deleted yet from Q. for each neighbor ux of vx: alt = distance[vx] + length(vx, ux) // A path with lesser weight (shorter path), to ux is found if alt <distance[ux]: distance[ux]="alt" updating the distance of ux return dist[] end method < pre> <h2>Implementation of Dijkstra Algorithm</h2> <p>The following code implements the Dijkstra Algorithm using the diagram mentioned below.</p> <img src="//techcodeview.com/img/java-tutorial/65/dijkstra-algorithm-java.webp" alt="Dijkstra Algorithm Java"> <p> <strong>FileName:</strong> DijkstraExample.java</p> <pre> // A Java program that finds the shortest path using Dijkstra&apos;s algorithm. // The program uses the adjacency matrix for the representation of a graph // import statements import java.util.*; import java.io.*; import java.lang.*; public class DijkstraExample { // A utility method to compute the vertex with the distance value, which is minimum // from the group of vertices that has not been included yet static final int totalVertex = 9; int minimumDistance(int distance[], Boolean spSet[]) { // Initialize min value int m = Integer.MAX_VALUE, m_index = -1; for (int vx = 0; vx <totalvertex; 0 1 3 4 5 6 9 vx++) { if (spset[vx]="=" false && distance[vx] <="m)" m="distance[vx];" m_index="vx;" } return m_index; a utility method to display the built distance array void printsolution(int distance[], int n) system.out.println('the shortest from source 0th node all other nodes are: '); for (int j="0;" n; j++) system.out.println('to ' + is: distance[j]); that does implementation of dijkstra's path algorithm graph is being represented using adjacency matrix representation dijkstra(int graph[][], s) distance[]="new" int[totalvertex]; output distance[i] holds s spset[j] will be true vertex included in tree or finalized boolean spset[]="new" boolean[totalvertex]; initializing distances as infinite and totalvertex; distance[j]="Integer.MAX_VALUE;" itself always distance[s]="0;" compute given vertices cnt="0;" totalvertex - 1; cnt++) choose minimum set not yet processed. ux equal first iteration. spset); choosed marked it means processed spset[ux]="true;" updating value neighboring vertex. vx="0;" update only spset, there an edge vx, total weight through lesser than current (!spset[vx] graph[ux][vx] !="-1" distance[ux] distance[vx]) graph[ux][vx]; build printsolution(distance, totalvertex); main public static main(string argvs[]) * created. arr[x][y]="-" means, no any connects x y directly grph[][]="new" int[][] -1, 3, 7, -1 }, 10, 6, 2, 8, 13, 9, 4, 1, 5, }; creating object class dijkstraexample obj="new" dijkstraexample(); obj.dijkstra(grph, 0); pre> <p> <strong>Output:</strong> </p> <pre> The shortest Distance from source 0th node to all other nodes are: To 0 the shortest distance is: 0 To 1 the shortest distance is: 3 To 2 the shortest distance is: 8 To 3 the shortest distance is: 10 To 4 the shortest distance is: 18 To 5 the shortest distance is: 10 To 6 the shortest distance is: 9 To 7 the shortest distance is: 7 To 8 the shortest distance is: 7 </pre> <p>The time complexity of the above code is O(V<sup>2</sup>), where V is the total number of vertices present in the graph. Such time complexity does not bother much when the graph is smaller but troubles a lot when the graph is of larger size. Therefore, we have to do the optimization to reduce this complexity. With the help of the priority queue, we can decrease the time complexity. Observe the following code that is written for the graph depicted above.</p> <p> <strong>FileName:</strong> DijkstraExample1.java</p> <pre> // Java Program shows the implementation Dijkstra&apos;s Algorithm // Using the Priority Queue // import statement import java.util.*; // Main class DijkstraExample1 public class DijkstraExample1 { // Member variables of the class private int distance[]; private Set settld; private PriorityQueue pQue; // Total count of the vertices private int totalNodes; List<list> adjacent; // Constructor of the class public DijkstraExample1(int totalNodes) { this.totalNodes = totalNodes; distance = new int[totalNodes]; settld = new HashSet(); pQue = new PriorityQueue(totalNodes, new Node()); } public void dijkstra(List<list> adjacent, int s) { this.adjacent = adjacent; for (int j = 0; j <totalnodes; j++) { initializing the distance of every node to infinity (a large number) distance[j]="Integer.MAX_VALUE;" } adding source pque pque.add(new node(s, 0)); is always zero distance[s]="0;" while (settld.size() !="totalNodes)" terminating condition check when priority queue contains elements, return if (pque.isempty()) return; deleting that has minimum from int ux="pQue.remove().n;" whose confirmed (settld.contains(ux)) continue; we don't have call eneighbors(ux) already present in settled set. settld.add(ux); eneighbours(ux); private void eneighbours(int ux) edgedist="-1;" newdist="-1;" all neighbors vx for (int j="0;" < adjacent.get(ux).size(); current hasn't been processed (!settld.contains(vx.n)) + edgedist; new lesser cost (newdist distance[vx.n]) distance[vx.n]="newDist;" node(vx.n, distance[vx.n])); main method public static main(string argvs[]) totalnodes="9;" s="0;" representation connected edges using adjacency list by declaration class object declaring and type list<list> adjacent = new ArrayList<list>(); // Initialize list for every node for (int i = 0; i <totalnodes; 0 1 2 3 i++) { list itm="new" arraylist(); adjacent.add(itm); } adding the edges statement adjacent.get(0).add(new node(1, 3)); means to travel from node 1, one has cover units of distance it does not mean 0, we have add adjacent.get(1).add(new node(0, note that is same i.e., in both cases. similarly, added other too. node(7, 7)); node(2, 10)); node(8, 4)); adjacent.get(2).add(new node(3, 6)); node(5, 2)); 1)); adjacent.get(3).add(new node(4, 8)); 13)); adjacent.get(4).add(new 9)); adjacent.get(5).add(new node(6, 5)); adjacent.get(6).add(new adjacent.get(7).add(new adjacent.get(8).add(new creating an object class dijkstraexample1 obj="new" dijkstraexample1(totalnodes); obj.dijkstra(adjacent, s); printing shortest path all nodes source system.out.println('the :'); for (int j="0;" < obj.distance.length; j++) system.out.println(s + ' obj.distance[j]); implementing comparator interface this represents a graph implements member variables public int n; price; constructors constructor node() node(int n, price) this.n="n;" this.price="price;" @override compare(node n1, n2) if (n1.price n2.price) return 1; 0; pre> <p> <strong>Output:</strong> </p> <pre> The shortest path from the node: 0 to 0 is 0 0 to 1 is 3 0 to 2 is 8 0 to 3 is 10 0 to 4 is 18 0 to 5 is 10 0 to 6 is 9 0 to 7 is 7 0 to 8 is 7 </pre> <p>The time complexity of the above implementation is O(V + E*log(V)), where V is the total number of vertices, and E is the number of Edges present in the graph.</p> <h2>Limitations of Dijkstra Algorithm</h2> <p>The following are some limitations of the Dijkstra Algorithm:</p> <ol class="points"> <li>The Dijkstra algorithm does not work when an edge has negative values.</li> <li>For cyclic graphs, the algorithm does not evaluate the shortest path. Hence, for the cyclic graphs, it is not recommended to use the Dijkstra Algorithm.</li> </ol> <h2>Usages of Dijkstra Algorithm</h2> <p>A few prominent usages of the Dijkstra algorithm are:</p> <ol class="points"> <li>The algorithm is used by Google maps.</li> <li>The algorithm is used to find the distance between two locations.</li> <li>In IP routing also, this algorithm is used to discover the shortest path.</li> </ol> <hr></totalnodes;></list></totalnodes;></list></list></pre></totalvertex;></pre></distance[ux]:>

La complexité temporelle du code ci-dessus est O(V2), où V est le nombre total de sommets présents dans le graphe. Une telle complexité temporelle ne gêne pas beaucoup lorsque le graphe est plus petit mais est très gênante lorsque le graphe est de plus grande taille. Par conséquent, nous devons procéder à l’optimisation pour réduire cette complexité. Avec l'aide de la file d'attente prioritaire, nous pouvons réduire la complexité temporelle. Observez le code suivant écrit pour le graphique illustré ci-dessus.

Nom de fichier: DijkstraExample1.java

 // Java Program shows the implementation Dijkstra&apos;s Algorithm // Using the Priority Queue // import statement import java.util.*; // Main class DijkstraExample1 public class DijkstraExample1 { // Member variables of the class private int distance[]; private Set settld; private PriorityQueue pQue; // Total count of the vertices private int totalNodes; List<list> adjacent; // Constructor of the class public DijkstraExample1(int totalNodes) { this.totalNodes = totalNodes; distance = new int[totalNodes]; settld = new HashSet(); pQue = new PriorityQueue(totalNodes, new Node()); } public void dijkstra(List<list> adjacent, int s) { this.adjacent = adjacent; for (int j = 0; j <totalnodes; j++) { initializing the distance of every node to infinity (a large number) distance[j]="Integer.MAX_VALUE;" } adding source pque pque.add(new node(s, 0)); is always zero distance[s]="0;" while (settld.size() !="totalNodes)" terminating condition check when priority queue contains elements, return if (pque.isempty()) return; deleting that has minimum from int ux="pQue.remove().n;" whose confirmed (settld.contains(ux)) continue; we don\'t have call eneighbors(ux) already present in settled set. settld.add(ux); eneighbours(ux); private void eneighbours(int ux) edgedist="-1;" newdist="-1;" all neighbors vx for (int j="0;" < adjacent.get(ux).size(); current hasn\'t been processed (!settld.contains(vx.n)) + edgedist; new lesser cost (newdist distance[vx.n]) distance[vx.n]="newDist;" node(vx.n, distance[vx.n])); main method public static main(string argvs[]) totalnodes="9;" s="0;" representation connected edges using adjacency list by declaration class object declaring and type list<list> adjacent = new ArrayList<list>(); // Initialize list for every node for (int i = 0; i <totalnodes; 0 1 2 3 i++) { list itm="new" arraylist(); adjacent.add(itm); } adding the edges statement adjacent.get(0).add(new node(1, 3)); means to travel from node 1, one has cover units of distance it does not mean 0, we have add adjacent.get(1).add(new node(0, note that is same i.e., in both cases. similarly, added other too. node(7, 7)); node(2, 10)); node(8, 4)); adjacent.get(2).add(new node(3, 6)); node(5, 2)); 1)); adjacent.get(3).add(new node(4, 8)); 13)); adjacent.get(4).add(new 9)); adjacent.get(5).add(new node(6, 5)); adjacent.get(6).add(new adjacent.get(7).add(new adjacent.get(8).add(new creating an object class dijkstraexample1 obj="new" dijkstraexample1(totalnodes); obj.dijkstra(adjacent, s); printing shortest path all nodes source system.out.println(\'the :\'); for (int j="0;" < obj.distance.length; j++) system.out.println(s + \' obj.distance[j]); implementing comparator interface this represents a graph implements member variables public int n; price; constructors constructor node() node(int n, price) this.n="n;" this.price="price;" @override compare(node n1, n2) if (n1.price n2.price) return 1; 0; pre> <p> <strong>Output:</strong> </p> <pre> The shortest path from the node: 0 to 0 is 0 0 to 1 is 3 0 to 2 is 8 0 to 3 is 10 0 to 4 is 18 0 to 5 is 10 0 to 6 is 9 0 to 7 is 7 0 to 8 is 7 </pre> <p>The time complexity of the above implementation is O(V + E*log(V)), where V is the total number of vertices, and E is the number of Edges present in the graph.</p> <h2>Limitations of Dijkstra Algorithm</h2> <p>The following are some limitations of the Dijkstra Algorithm:</p> <ol class="points"> <li>The Dijkstra algorithm does not work when an edge has negative values.</li> <li>For cyclic graphs, the algorithm does not evaluate the shortest path. Hence, for the cyclic graphs, it is not recommended to use the Dijkstra Algorithm.</li> </ol> <h2>Usages of Dijkstra Algorithm</h2> <p>A few prominent usages of the Dijkstra algorithm are:</p> <ol class="points"> <li>The algorithm is used by Google maps.</li> <li>The algorithm is used to find the distance between two locations.</li> <li>In IP routing also, this algorithm is used to discover the shortest path.</li> </ol> <hr></totalnodes;></list></totalnodes;></list></list>

La complexité temporelle de l'implémentation ci-dessus est O(V + E*log(V)), où V est le nombre total de sommets et E est le nombre d'arêtes présentes dans le graphe.

Limites de l’algorithme de Dijkstra

Voici quelques limitations de l'algorithme de Dijkstra :

programme java
  1. L'algorithme de Dijkstra ne fonctionne pas lorsqu'une arête a des valeurs négatives.
  2. Pour les graphiques cycliques, l'algorithme n'évalue pas le chemin le plus court. Par conséquent, pour les graphiques cycliques, il n’est pas recommandé d’utiliser l’algorithme de Dijkstra.

Utilisations de l’algorithme de Dijkstra

Voici quelques utilisations importantes de l’algorithme de Dijkstra :

  1. L'algorithme est utilisé par Google Maps.
  2. L'algorithme est utilisé pour trouver la distance entre deux emplacements.
  3. Dans le routage IP également, cet algorithme est utilisé pour découvrir le chemin le plus court.