Étant donné un tableau arr[] et un entier k la tâche consiste à compter tous les sous-tableaux dont la somme est divisible par k .
Exemples :
Saisir: arr[] = [4 5 0 -2 -3 1] k = 5
Sortir: 7
Explication: Il existe 7 sous-tableaux dont la somme est divisible par 5 : [4 5 0 -2 -3 1] [5] [5 0] [5 0 -2 -3] [0] [0 -2 -3] et [-2 -3].Saisir: arr[] = [2 2 2 2 2 2] k = 2
Sortir: 21
Explication: Toutes les sommes des sous-tableaux sont divisibles par 2.liste dans un tableau javaSaisir: arr[] = [-1 -3 2] k = 5
Sortir:
Explication: Il n'existe pas de sous-tableau dont la somme est divisible par k.clé primaire et clé composite en SQL
Table des matières
- [Approche naïve] Itération sur tous les sous-tableaux
- [Approche attendue] Utilisation de la somme des préfixes modulo k
[Approche naïve] Itération sur tous les sous-tableaux
L'idée est de parcourir tous les sous-tableaux possibles tout en gardant la trace des somme du sous-tableau modulo k . Pour tout sous-tableau, si le sous-tableau du sous-tableau modulo k devient 0, incrémentez le compte de 1. Après avoir parcouru tous les sous-tableaux, renvoyez le compte comme résultat.
C++// C++ Code to Count Subarrays With Sum Divisible By K // by iterating over all possible subarrays #include #include using namespace std; int subCount(vector<int> &arr int k) { int n = arr.size() res = 0; // Iterating over starting indices of subarray for(int i = 0; i < n; i++) { int sum = 0; // Iterating over ending indices of subarray for(int j = i; j < n; j++) { sum = (sum + arr[j]) % k; if(sum == 0) res += 1; } } return res; } int main() { vector<int> arr = {4 5 0 -2 -3 1}; int k = 5; cout << subCount(arr k); }
C // C Code to Count Subarrays With Sum Divisible By K // by iterating over all possible subarrays #include int subCount(int arr[] int n int k) { int res = 0; // Iterating over starting indices of subarray for (int i = 0; i < n; i++) { int sum = 0; // Iterating over ending indices of subarray for (int j = i; j < n; j++) { sum = (sum + arr[j]) % k; if (sum == 0) res += 1; } } return res; } int main() { int arr[] = {4 5 0 -2 -3 1}; int k = 5; int n = sizeof(arr) / sizeof(arr[0]); printf('%d' subCount(arr n k)); return 0; }
Java // Java Code to Count Subarrays With Sum Divisible By K // by iterating over all possible subarrays import java.util.*; class GfG { static int subCount(int[] arr int k) { int n = arr.length res = 0; // Iterating over starting indices of subarray for (int i = 0; i < n; i++) { int sum = 0; // Iterating over ending indices of subarray for (int j = i; j < n; j++) { sum = (sum + arr[j]) % k; if (sum == 0) res += 1; } } return res; } public static void main(String[] args) { int[] arr = {4 5 0 -2 -3 1}; int k = 5; System.out.println(subCount(arr k)); } }
Python # Python Code to Count Subarrays With Sum Divisible By K # by iterating over all possible subarrays def subCount(arr k): n = len(arr) res = 0 # Iterating over starting indices of subarray for i in range(n): sum = 0 # Iterating over ending indices of subarray for j in range(i n): sum = (sum + arr[j]) % k if sum == 0: res += 1 return res if __name__ == '__main__': arr = [4 5 0 -2 -3 1] k = 5 print(subCount(arr k))
C# // C# Code to Count Subarrays With Sum Divisible By K // by iterating over all possible subarrays using System; using System.Collections.Generic; class GfG { static int subCount(int[] arr int k) { int n = arr.Length res = 0; // Iterating over starting indices of subarray for (int i = 0; i < n; i++) { int sum = 0; // Iterating over ending indices of subarray for (int j = i; j < n; j++) { sum = (sum + arr[j]) % k; if (sum == 0) res += 1; } } return res; } static void Main() { int[] arr = { 4 5 0 -2 -3 1 }; int k = 5; Console.WriteLine(subCount(arr k)); } }
JavaScript // JavaScript Code to Count Subarrays With Sum Divisible By K // by iterating over all possible subarrays function subCount(arr k) { let n = arr.length res = 0; // Iterating over starting indices of subarray for (let i = 0; i < n; i++) { let sum = 0; // Iterating over ending indices of subarray for (let j = i; j < n; j++) { sum = (sum + arr[j]) % k; if (sum === 0) res += 1; } } return res; } // Driver Code let arr = [4 5 0 -2 -3 1]; let k = 5; console.log(subCount(arr k));
Sortir
7
Complexité temporelle : O(n^2) alors que nous parcourons tous les points de début et de fin possibles des sous-tableaux.
Espace auxiliaire : O(1)
[Approche attendue] Utilisation de la somme des préfixes modulo k
L'idée est d'utiliser Technique de somme de préfixe avec Hachage . En observant attentivement, nous pouvons dire que si un sous-tableau arr[i...j] a une somme divisible par k alors (prefix sum[i] % k) sera égal à (prefix sum[j] % k). Nous pouvons donc parcourir arr[] tout en conservant une carte de hachage ou un dictionnaire pour compter le nombre de (préfixe somme mod k). Pour chaque index i, le nombre de sous-tableaux se terminant par i et dont la somme est divisible par k sera égal au nombre d'occurrences de (préfixe sum[i] mod k) avant i.
Note: La valeur négative de (somme du préfixe mod k) doit être traitée séparément dans des langages comme C++ Java C# et Javascript alors que dans Python (somme du préfixe mod k) est toujours une valeur non négative car elle prend le signe du diviseur qui est k .
C++// C++ Code to Count Subarrays With Sum Divisible By K // using Prefix Sum and Hash map #include #include #include using namespace std; int subCount(vector<int> &arr int k) { int n = arr.size() res = 0; unordered_map<int int> prefCnt; int sum = 0; // Iterate over all ending points for(int i = 0; i < n; i++) { // prefix sum mod k (handling negative prefix sum) sum = ((sum + arr[i]) % k + k) % k; // If sum == 0 then increment the result by 1 // to count subarray arr[0...i] if(sum == 0) res += 1; // Add count of all starting points for index i res += prefCnt[sum]; prefCnt[sum] += 1; } return res; } int main() { vector<int> arr = {4 5 0 -2 -3 1}; int k = 5; cout << subCount(arr k); }
Java // Java Code to Count Subarrays With Sum Divisible By K // using Prefix Sum and Hash map import java.util.*; class GfG { static int subCount(int[] arr int k) { int n = arr.length res = 0; Map<Integer Integer> prefCnt = new HashMap<>(); int sum = 0; // Iterate over all ending points for (int i = 0; i < n; i++) { // prefix sum mod k (handling negative prefix sum) sum = ((sum + arr[i]) % k + k) % k; // If sum == 0 then increment the result by 1 // to count subarray arr[0...i] if (sum == 0) res += 1; // Add count of all starting points for index i res += prefCnt.getOrDefault(sum 0); prefCnt.put(sum prefCnt.getOrDefault(sum 0) + 1); } return res; } public static void main(String[] args) { int[] arr = {4 5 0 -2 -3 1}; int k = 5; System.out.println(subCount(arr k)); } }
Python # Python Code to Count Subarrays With Sum Divisible By K # using Prefix Sum and Dictionary from collections import defaultdict def subCount(arr k): n = len(arr) res = 0 prefCnt = defaultdict(int) sum = 0 # Iterate over all ending points for i in range(n): sum = (sum + arr[i]) % k # If sum == 0 then increment the result by 1 # to count subarray arr[0...i] if sum == 0: res += 1 # Add count of all starting points for index i res += prefCnt[sum] prefCnt[sum] += 1 return res if __name__ == '__main__': arr = [4 5 0 -2 -3 1] k = 5 print(subCount(arr k))
C# // C# Code to Count Subarrays With Sum Divisible By K // using Prefix Sum and Hash map using System; using System.Collections.Generic; class GfG { static int SubCount(int[] arr int k) { int n = arr.Length res = 0; Dictionary<int int> prefCnt = new Dictionary<int int>(); int sum = 0; // Iterate over all ending points for (int i = 0; i < n; i++) { // prefix sum mod k (handling negative prefix sum) sum = ((sum + arr[i]) % k + k) % k; // If sum == 0 then increment the result by 1 // to count subarray arr[0...i] if (sum == 0) res += 1; // Add count of all starting points for index i if (prefCnt.ContainsKey(sum)) res += prefCnt[sum]; if (prefCnt.ContainsKey(sum)) prefCnt[sum] += 1; else prefCnt[sum] = 1; } return res; } static void Main() { int[] arr = { 4 5 0 -2 -3 1 }; int k = 5; Console.WriteLine(SubCount(arr k)); } }
JavaScript // JavaScript Code to Count Subarrays With Sum Divisible By K // using Prefix Sum and Hash map function subCount(arr k) { let n = arr.length res = 0; let prefCnt = new Map(); let sum = 0; // Iterate over all ending points for (let i = 0; i < n; i++) { // prefix sum mod k (handling negative prefix sum) sum = ((sum + arr[i]) % k + k) % k; // If sum == 0 then increment the result by 1 // to count subarray arr[0...i] if (sum === 0) res += 1; // Add count of all starting points for index i res += (prefCnt.get(sum) || 0); prefCnt.set(sum (prefCnt.get(sum) || 0) + 1); } return res; } // Driver Code let arr = [4 5 0 -2 -3 1]; let k = 5; console.log(subCount(arr k));
Sortir
7
Complexité temporelle : O(n) car nous parcourons le tableau une seule fois.
Espace auxiliaire : O(min(n k)) comme au plus k les clés peuvent être présentes dans la carte de hachage ou le dictionnaire.
comment fonctionne un ordinateur