logo

Diviseurs communs de deux nombres

Étant donné deux nombres entiers, la tâche consiste à trouver le nombre de tous les diviseurs communs de nombres donnés ?

Exemples :  

Input : a = 12 b = 24 Output: 6 // all common divisors are 1 2 3 // 4 6 and 12 Input : a = 3 b = 17 Output: 1 // all common divisors are 1 Input : a = 20 b = 36 Output: 3 // all common divisors are 1 2 4
Recommended Practice Diviseurs communs Essayez-le !

Il est recommandé de se référer tous les diviseurs d'un nombre donné comme condition préalable à cet article. 



Solution naïve  
Une solution simple consiste à rechercher d’abord tous les diviseurs du premier nombre et à les stocker dans un tableau ou un hachage. Trouvez ensuite les diviseurs communs du deuxième nombre et stockez-les. Enfin, imprimez les éléments communs de deux tableaux ou hachages stockés. La clé est que la grandeur des puissances des facteurs premiers d’un diviseur doit être égale à la puissance minimale de deux facteurs premiers de a et b.

  • Trouver les facteurs premiers d'une utilisation factorisation première .
  • Trouvez le nombre de chaque facteur premier de un et stockez-le dans un Hashmap.
  • Factoriser en premier b en utilisant des facteurs premiers distincts de un .
  • Alors le nombre total de diviseurs serait égal au produit de (compte + 1) 
    de chaque facteur.
  • compterest le minimum de comptes de chaque facteur premier de un et b.
  • Cela donne le nombre de tous les diviseurs de un et b .
C++
// C++ implementation of program  #include    using namespace std; // Map to store the count of each // prime factor of a  map<int int> ma; // Function that calculate the count of  // each prime factor of a number  void primeFactorize(int a)  {   for(int i = 2; i * i <= a; i += 2)   {   int cnt = 0;   while (a % i == 0)   {   cnt++;   a /= i;   }   ma[i] = cnt;   }   if (a > 1)  {  ma[a] = 1;  } }  // Function to calculate all common // divisors of two given numbers  // a b --> input integer numbers  int commDiv(int a int b)  {     // Find count of each prime factor of a   primeFactorize(a);   // stores number of common divisors   int res = 1;   // Find the count of prime factors   // of b using distinct prime factors of a   for(auto m = ma.begin();  m != ma.end(); m++)  {  int cnt = 0;   int key = m->first;   int value = m->second;   while (b % key == 0)   {   b /= key;   cnt++;   }   // Prime factor of common divisor   // has minimum cnt of both a and b   res *= (min(cnt value) + 1);   }   return res;  }  // Driver code  int main() {  int a = 12 b = 24;     cout << commDiv(a b) << endl;     return 0; } // This code is contributed by divyeshrabadiya07 
Java
// Java implementation of program import java.util.*; import java.io.*; class GFG {  // map to store the count of each prime factor of a  static HashMap<Integer Integer> ma = new HashMap<>();  // method that calculate the count of  // each prime factor of a number  static void primeFactorize(int a)  {  for (int i = 2; i * i <= a; i += 2) {  int cnt = 0;  while (a % i == 0) {  cnt++;  a /= i;  }  ma.put(i cnt);  }  if (a > 1)  ma.put(a 1);  }  // method to calculate all common divisors  // of two given numbers  // a b --> input integer numbers  static int commDiv(int a int b)  {  // Find count of each prime factor of a  primeFactorize(a);  // stores number of common divisors  int res = 1;  // Find the count of prime factors of b using  // distinct prime factors of a  for (Map.Entry<Integer Integer> m : ma.entrySet()) {  int cnt = 0;  int key = m.getKey();  int value = m.getValue();  while (b % key == 0) {  b /= key;  cnt++;  }  // prime factor of common divisor  // has minimum cnt of both a and b  res *= (Math.min(cnt value) + 1);  }  return res;  }  // Driver method  public static void main(String args[])  {  int a = 12 b = 24;  System.out.println(commDiv(a b));  } } 
Python3
# Python3 implementation of program  import math # Map to store the count of each # prime factor of a  ma = {} # Function that calculate the count of  # each prime factor of a number  def primeFactorize(a): sqt = int(math.sqrt(a)) for i in range(2 sqt 2): cnt = 0 while (a % i == 0): cnt += 1 a /= i ma[i] = cnt if (a > 1): ma[a] = 1 # Function to calculate all common # divisors of two given numbers  # a b --> input integer numbers  def commDiv(a b): # Find count of each prime factor of a  primeFactorize(a) # stores number of common divisors  res = 1 # Find the count of prime factors  # of b using distinct prime factors of a  for key value in ma.items(): cnt = 0 while (b % key == 0): b /= key cnt += 1 # Prime factor of common divisor  # has minimum cnt of both a and b  res *= (min(cnt value) + 1) return res # Driver code  a = 12 b = 24 print(commDiv(a b)) # This code is contributed by Stream_Cipher 
C#
// C# implementation of program using System; using System.Collections.Generic;  class GFG{   // Map to store the count of each  // prime factor of a static Dictionary<int  int> ma = new Dictionary<int  int>(); // Function that calculate the count of // each prime factor of a number static void primeFactorize(int a) {  for(int i = 2; i * i <= a; i += 2)  {  int cnt = 0;  while (a % i == 0)  {  cnt++;  a /= i;  }  ma.Add(i cnt);  }    if (a > 1)  ma.Add(a 1); } // Function to calculate all common  // divisors of two given numbers // a b --> input integer numbers static int commDiv(int a int b) {    // Find count of each prime factor of a  primeFactorize(a);    // Stores number of common divisors  int res = 1;    // Find the count of prime factors  // of b using distinct prime factors of a  foreach(KeyValuePair<int int> m in ma)  {  int cnt = 0;  int key = m.Key;  int value = m.Value;    while (b % key == 0)  {  b /= key;  cnt++;  }  // Prime factor of common divisor  // has minimum cnt of both a and b  res *= (Math.Min(cnt value) + 1);  }  return res; } // Driver code  static void Main() {  int a = 12 b = 24;    Console.WriteLine(commDiv(a b)); } } // This code is contributed by divyesh072019 
JavaScript
<script>   // JavaScript implementation of program  // Map to store the count of each  // prime factor of a  let ma = new Map();  // Function that calculate the count of  // each prime factor of a number  function primeFactorize(a)  {  for(let i = 2; i * i <= a; i += 2)  {  let cnt = 0;  while (a % i == 0)  {  cnt++;  a = parseInt(a / i 10);  }  ma.set(i cnt);  }  if (a > 1)  {  ma.set(a 1);  }  }  // Function to calculate all common  // divisors of two given numbers  // a b --> input integer numbers  function commDiv(ab)  {  // Find count of each prime factor of a  primeFactorize(a);  // stores number of common divisors  let res = 1;  // Find the count of prime factors  // of b using distinct prime factors of a  ma.forEach((valueskeys)=>{  let cnt = 0;  let key = keys;  let value = values;  while (b % key == 0)  {  b = parseInt(b / key 10);  cnt++;  }  // Prime factor of common divisor  // has minimum cnt of both a and b  res *= (Math.min(cnt value) + 1);  })  return res;  }  // Driver code  let a = 12 b = 24;    document.write(commDiv(a b));   </script> 

Sortir:  

6

Complexité temporelle : O(?n journal n) 
Espace auxiliaire : Sur)


Solution efficace - 
Une meilleure solution consiste à calculer le plus grand diviseur commun (pgcd) de deux nombres donnés, puis comptez les diviseurs de ce pgcd. 

C++
// C++ implementation of program #include    using namespace std; // Function to calculate gcd of two numbers int gcd(int a int b) {  if (a == 0)  return b;  return gcd(b % a a); } // Function to calculate all common divisors // of two given numbers // a b --> input integer numbers int commDiv(int a int b) {  // find gcd of a b  int n = gcd(a b);  // Count divisors of n.  int result = 0;  for (int i = 1; i <= sqrt(n); i++) {  // if 'i' is factor of n  if (n % i == 0) {  // check if divisors are equal  if (n / i == i)  result += 1;  else  result += 2;  }  }  return result; } // Driver program to run the case int main() {  int a = 12 b = 24;  cout << commDiv(a b);  return 0; } 
Java
// Java implementation of program class Test {  // method to calculate gcd of two numbers  static int gcd(int a int b)  {  if (a == 0)  return b;  return gcd(b % a a);  }  // method to calculate all common divisors  // of two given numbers  // a b --> input integer numbers  static int commDiv(int a int b)  {  // find gcd of a b  int n = gcd(a b);  // Count divisors of n.  int result = 0;  for (int i = 1; i <= Math.sqrt(n); i++) {  // if 'i' is factor of n  if (n % i == 0) {  // check if divisors are equal  if (n / i == i)  result += 1;  else  result += 2;  }  }  return result;  }  // Driver method  public static void main(String args[])  {  int a = 12 b = 24;  System.out.println(commDiv(a b));  } } 
Python3
# Python implementation of program from math import sqrt # Function to calculate gcd of two numbers def gcd(a b): if a == 0: return b return gcd(b % a a) # Function to calculate all common divisors  # of two given numbers  # a b --> input integer numbers  def commDiv(a b): # find GCD of a b n = gcd(a b) # Count divisors of n result = 0 for i in range(1int(sqrt(n))+1): # if i is a factor of n if n % i == 0: # check if divisors are equal if n/i == i: result += 1 else: result += 2 return result # Driver program to run the case  if __name__ == '__main__': a = 12 b = 24; print(commDiv(a b)) 
C#
// C# implementation of program using System; class GFG {  // method to calculate gcd  // of two numbers  static int gcd(int a int b)  {  if (a == 0)  return b;  return gcd(b % a a);  }  // method to calculate all  // common divisors of two  // given numbers a b -->  // input integer numbers  static int commDiv(int a int b)  {  // find gcd of a b  int n = gcd(a b);  // Count divisors of n.  int result = 0;  for (int i = 1; i <= Math.Sqrt(n); i++) {  // if 'i' is factor of n  if (n % i == 0) {  // check if divisors are equal  if (n / i == i)  result += 1;  else  result += 2;  }  }  return result;  }  // Driver method  public static void Main(String[] args)  {  int a = 12 b = 24;  Console.Write(commDiv(a b));  } } // This code contributed by parashar. 
PHP
 // PHP implementation of program // Function to calculate  // gcd of two numbers function gcd($a $b) { if ($a == 0) return $b; return gcd($b % $a $a); } // Function to calculate all common  // divisors of two given numbers // a b --> input integer numbers function commDiv($a $b) { // find gcd of a b $n = gcd($a $b); // Count divisors of n. $result = 0; for ($i = 1; $i <= sqrt($n); $i++) { // if 'i' is factor of n if ($n % $i == 0) { // check if divisors  // are equal if ($n / $i == $i) $result += 1; else $result += 2; } } return $result; } // Driver Code $a = 12; $b = 24; echo(commDiv($a $b)); // This code is contributed by Ajit. ?> 
JavaScript
<script>  // Javascript implementation of program    // Function to calculate gcd of two numbers  function gcd(a b)  {  if (a == 0)  return b;  return gcd(b % a a);  }  // Function to calculate all common divisors  // of two given numbers  // a b --> input integer numbers  function commDiv(a b)  {  // find gcd of a b  let n = gcd(a b);  // Count divisors of n.  let result = 0;  for (let i = 1; i <= Math.sqrt(n); i++) {  // if 'i' is factor of n  if (n % i == 0) {  // check if divisors are equal  if (n / i == i)  result += 1;  else  result += 2;  }  }  return result;  }  let a = 12 b = 24;  document.write(commDiv(a b));   </script> 

Sortir :   

6

Complexité temporelle : Sur1/2) où n est le pgcd de deux nombres.
Espace auxiliaire : O(1)

Une autre approche :

1. Définissez une fonction « pgcd » qui prend deux entiers « a » et « b » et renvoie leur plus grand diviseur commun (PGCD) à l'aide de l'algorithme euclidien.
2. Définissez une fonction 'count_common_divisors' qui prend deux entiers 'a' et 'b' et compte le nombre de diviseurs communs de 'a' et 'b' en utilisant leur PGCD.
3. Calculez le PGCD de « a » et « b » à l'aide de la fonction « pgcd ».
4. Initialisez un compteur 'count' à 0.
5. Parcourez tous les diviseurs possibles du PGCD de « a » et « b » de 1 à la racine carrée du PGCD.
6. Si le diviseur actuel divise le GCD de manière égale, incrémentez le compteur de 2 (car « a » et « b » sont divisibles par le diviseur).
7. Si le carré du diviseur actuel est égal au PGCD, décrémentez le compteur de 1 (car nous avons déjà compté ce diviseur une fois).
8. Renvoie le nombre final de diviseurs communs.
9. Dans la fonction principale, définissez deux entiers 'a' et 'b' et appelez la fonction 'count_common_divisors' avec ces entiers.
10. Imprimez le nombre de diviseurs communs de « a » et « b » à l'aide de la fonction printf.

C
#include  int gcd(int a int b) {  if(b == 0) {  return a;  }  return gcd(b a % b); } int count_common_divisors(int a int b) {  int gcd_ab = gcd(a b);  int count = 0;  for(int i = 1; i * i <= gcd_ab; i++) {  if(gcd_ab % i == 0) {  count += 2;  if(i * i == gcd_ab) {  count--;  }  }  }  return count; } int main() {  int a = 12;  int b = 18;  int common_divisors = count_common_divisors(a b);  printf('The number of common divisors of %d and %d is %d.n' a b common_divisors);  return 0; } 
C++
#include    using namespace std; int gcd(int a int b) {  if(b == 0) {  return a;  }  return gcd(b a % b); } int count_common_divisors(int a int b) {  int gcd_ab = gcd(a b);  int count = 0;  for(int i = 1; i * i <= gcd_ab; i++) {  if(gcd_ab % i == 0) {  count += 2;  if(i * i == gcd_ab) {  count--;  }  }  }  return count; } int main() {  int a = 12;  int b = 18;  int common_divisors = count_common_divisors(a b);  cout<<'The number of common divisors of '<<a<<' and '<<b<<' is '<<common_divisors<<'.'<<endl;  return 0; } 
Java
import java.util.*; public class Main {  public static int gcd(int a int b) {  if(b == 0) {  return a;  }  return gcd(b a % b);  }  public static int countCommonDivisors(int a int b) {  int gcd_ab = gcd(a b);  int count = 0;  for(int i = 1; i * i <= gcd_ab; i++) {  if(gcd_ab % i == 0) {  count += 2;  if(i * i == gcd_ab) {  count--;  }  }  }  return count;  }  public static void main(String[] args) {  int a = 12;  int b = 18;  int commonDivisors = countCommonDivisors(a b);  System.out.println('The number of common divisors of ' + a + ' and ' + b + ' is ' + commonDivisors + '.');  } } 
Python3
import math def gcd(a b): if b == 0: return a return gcd(b a % b) def count_common_divisors(a b): gcd_ab = gcd(a b) count = 0 for i in range(1 int(math.sqrt(gcd_ab)) + 1): if gcd_ab % i == 0: count += 2 if i * i == gcd_ab: count -= 1 return count a = 12 b = 18 common_divisors = count_common_divisors(a b) print('The number of common divisors of' a 'and' b 'is' common_divisors '.') # This code is contributed by Prajwal Kandekar 
C#
using System; public class MainClass {  public static int GCD(int a int b)  {  if (b == 0)  {  return a;  }  return GCD(b a % b);  }  public static int CountCommonDivisors(int a int b)  {  int gcd_ab = GCD(a b);  int count = 0;  for (int i = 1; i * i <= gcd_ab; i++)  {  if (gcd_ab % i == 0)  {  count += 2;  if (i * i == gcd_ab)  {  count--;  }  }  }  return count;  }  public static void Main()  {  int a = 12;  int b = 18;  int commonDivisors = CountCommonDivisors(a b);  Console.WriteLine('The number of common divisors of {0} and {1} is {2}.' a b commonDivisors);  } } 
JavaScript
// Function to calculate the greatest common divisor of  // two integers a and b using the Euclidean algorithm function gcd(a b) {  if(b === 0) {  return a;  }  return gcd(b a % b); } // Function to count the number of common divisors of two integers a and b function count_common_divisors(a b) {  let gcd_ab = gcd(a b);  let count = 0;  for(let i = 1; i * i <= gcd_ab; i++) {  if(gcd_ab % i === 0) {  count += 2;  if(i * i === gcd_ab) {  count--;  }  }  }  return count; } let a = 12; let b = 18; let common_divisors = count_common_divisors(a b); console.log(`The number of common divisors of ${a} and ${b} is ${common_divisors}.`); 

Sortir
The number of common divisors of 12 and 18 is 4.

La complexité temporelle de la fonction gcd() est O(log(min(a b))) car elle utilise l'algorithme d'Euclide qui prend un temps logarithmique par rapport au plus petit des deux nombres.

La complexité temporelle de la fonction count_common_divisors() est O(sqrt(gcd(a b))) car elle itère jusqu'à la racine carrée du pgcd des deux nombres.

La complexité spatiale des deux fonctions est O(1) car elles n'utilisent qu'une quantité constante de mémoire quelle que soit la taille d'entrée.