Étant donné les requêtes Q de type : LR pour chaque requête, vous devez imprimer le nombre maximum de diviseurs qu'un nombre x (L<= x <= R) a.
Exemples :
L = 1 R = 10 : 1 has 1 divisor. 2 has 2 divisors. 3 has 2 divisors. 4 has 3 divisors. 5 has 2 divisors. 6 has 4 divisors. 7 has 2 divisors. 8 has 4 divisors. 9 has 3 divisors. 10 has 4 divisors. So the answer for above query is 4 as it is the maximum number of divisors a number has in [1 10].
Pré-requis : Tamis d'Ératosthène Arbre de segments
Vous trouverez ci-dessous les étapes pour résoudre le problème.
- Voyons d’abord combien de diviseurs fait un nombre n = p1k1*p2k2* ... *pnkn (où p1p2...pnsont des nombres premiers) a ; la réponse est (k1+ 1)*(k2+ 1)**...*(kn+ 1) . Comment? Pour chaque nombre premier dans la factorisation première, nous pouvons avoir son kje+ 1 puissances possibles dans un diviseur (0 1 2... kje).
- Voyons maintenant comment trouver la factorisation première d'un nombre en construisant d'abord un tableau plus petit_prime[] qui stocke le plus petit diviseur premier de je à jeème index nous divisons un nombre par son plus petit diviseur premier pour obtenir un nouveau nombre (nous avons également le plus petit diviseur premier de ce nouveau nombre stocké) nous continuons à le faire jusqu'à ce que le plus petit diviseur premier du nombre change lorsque le plus petit facteur premier du nouveau nombre est différent du nombre précédent que nous avons kjepour le jeèmenombre premier dans la factorisation première du nombre donné.
- Enfin, nous obtenons le nombre de diviseurs pour tous les nombres et les stockons dans un arbre de segments qui conserve le nombre maximum dans les segments. Nous répondons à chaque requête en interrogeant l'arborescence des segments.
// A C++ implementation of the above idea to process // queries of finding a number with maximum divisors. #include using namespace std; #define maxn 1000005 #define INF 99999999 int smallest_prime[maxn]; int divisors[maxn]; int segmentTree[4 * maxn]; // Finds smallest prime factor of all numbers in // range[1 maxn) and stores them in smallest_prime[] // smallest_prime[i] should contain the smallest prime // that divides i void findSmallestPrimeFactors() { // Initialize the smallest_prime factors of all // to infinity for (int i = 0 ; i < maxn ; i ++ ) smallest_prime[i] = INF; // to be built like eratosthenes sieve for (long long i = 2; i < maxn; i++) { if (smallest_prime[i] == INF) { // prime number will have its smallest_prime // equal to itself smallest_prime[i] = i; for (long long j = i * i; j < maxn; j += i) // if 'i' is the first prime number reaching 'j' if (smallest_prime[j] > i) smallest_prime[j] = i; } } } // number of divisors of n = (p1 ^ k1) * (p2 ^ k2) ... (pn ^ kn) // are equal to (k1+1) * (k2+1) ... (kn+1) // this function finds the number of divisors of all numbers // in range [1 maxn) and stores it in divisors[] // divisors[i] stores the number of divisors i has void buildDivisorsArray() { for (int i = 1; i < maxn; i++) { divisors[i] = 1; int n = i p = smallest_prime[i] k = 0; // we can obtain the prime factorization of the number n // n = (p1 ^ k1) * (p2 ^ k2) ... (pn ^ kn) using the // smallest_prime[] array we keep dividing n by its // smallest_prime until it becomes 1 whilst we check // if we have need to set k zero while (n > 1) { n = n / p; k ++; if (smallest_prime[n] != p) { //use p^k initialize k to 0 divisors[i] = divisors[i] * (k + 1); k = 0; } p = smallest_prime[n]; } } } // builds segment tree for divisors[] array void buildSegtmentTree(int node int a int b) { // leaf node if (a == b) { segmentTree[node] = divisors[a]; return ; } //build left and right subtree buildSegtmentTree(2 * node a (a + b) / 2); buildSegtmentTree(2 * node + 1 ((a + b) / 2) + 1 b); //combine the information from left //and right subtree at current node segmentTree[node] = max(segmentTree[2 * node] segmentTree[2 *node + 1]); } //returns the maximum number of divisors in [l r] int query(int node int a int b int l int r) { // If current node's range is disjoint with query range if (l > b || a > r) return -1; // If the current node stores information for the range // that is completely inside the query range if (a >= l && b <= r) return segmentTree[node]; // Returns maximum number of divisors from left // or right subtree return max(query(2 * node a (a + b) / 2 l r) query(2 * node + 1 ((a + b) / 2) + 1 blr)); } // driver code int main() { // First find smallest prime divisors for all // the numbers findSmallestPrimeFactors(); // Then build the divisors[] array to store // the number of divisors buildDivisorsArray(); // Build segment tree for the divisors[] array buildSegtmentTree(1 1 maxn - 1); cout << 'Maximum divisors that a number has ' << ' in [1 100] are ' << query(1 1 maxn - 1 1 100) << endl; cout << 'Maximum divisors that a number has' << ' in [10 48] are ' << query(1 1 maxn - 1 10 48) << endl; cout << 'Maximum divisors that a number has' << ' in [1 10] are ' << query(1 1 maxn - 1 1 10) << endl; return 0; }
Java // Java implementation of the above idea to process // queries of finding a number with maximum divisors. import java.util.*; class GFG { static int maxn = 10005; static int INF = 999999; static int []smallest_prime = new int[maxn]; static int []divisors = new int[maxn]; static int []segmentTree = new int[4 * maxn]; // Finds smallest prime factor of all numbers // in range[1 maxn) and stores them in // smallest_prime[] smallest_prime[i] should // contain the smallest prime that divides i static void findSmallestPrimeFactors() { // Initialize the smallest_prime factors // of all to infinity for (int i = 0 ; i < maxn ; i ++ ) smallest_prime[i] = INF; // to be built like eratosthenes sieve for (int i = 2; i < maxn; i++) { if (smallest_prime[i] == INF) { // prime number will have its // smallest_prime equal to itself smallest_prime[i] = i; for (int j = i * i; j < maxn; j += i) // if 'i' is the first // prime number reaching 'j' if (smallest_prime[j] > i) smallest_prime[j] = i; } } } // number of divisors of n = (p1 ^ k1) * (p2 ^ k2) ... (pn ^ kn) // are equal to (k1+1) * (k2+1) ... (kn+1) // this function finds the number of divisors of all numbers // in range [1 maxn) and stores it in divisors[] // divisors[i] stores the number of divisors i has static void buildDivisorsArray() { for (int i = 1; i < maxn; i++) { divisors[i] = 1; int n = i p = smallest_prime[i] k = 0; // we can obtain the prime factorization of // the number n n = (p1 ^ k1) * (p2 ^ k2) ... (pn ^ kn) // using the smallest_prime[] array we keep dividing n // by its smallest_prime until it becomes 1 // whilst we check if we have need to set k zero while (n > 1) { n = n / p; k ++; if (smallest_prime[n] != p) { // use p^k initialize k to 0 divisors[i] = divisors[i] * (k + 1); k = 0; } p = smallest_prime[n]; } } } // builds segment tree for divisors[] array static void buildSegtmentTree(int node int a int b) { // leaf node if (a == b) { segmentTree[node] = divisors[a]; return ; } //build left and right subtree buildSegtmentTree(2 * node a (a + b) / 2); buildSegtmentTree(2 * node + 1 ((a + b) / 2) + 1 b); //combine the information from left //and right subtree at current node segmentTree[node] = Math.max(segmentTree[2 * node] segmentTree[2 *node + 1]); } // returns the maximum number of divisors in [l r] static int query(int node int a int b int l int r) { // If current node's range is disjoint // with query range if (l > b || a > r) return -1; // If the current node stores information // for the range that is completely inside // the query range if (a >= l && b <= r) return segmentTree[node]; // Returns maximum number of divisors from left // or right subtree return Math.max(query(2 * node a (a + b) / 2 l r) query(2 * node + 1 ((a + b) / 2) + 1 b l r)); } // Driver Code public static void main(String[] args) { // First find smallest prime divisors // for all the numbers findSmallestPrimeFactors(); // Then build the divisors[] array to store // the number of divisors buildDivisorsArray(); // Build segment tree for the divisors[] array buildSegtmentTree(1 1 maxn - 1); System.out.println('Maximum divisors that a number ' + 'has in [1 100] are ' + query(1 1 maxn - 1 1 100)); System.out.println('Maximum divisors that a number ' + 'has in [10 48] are ' + query(1 1 maxn - 1 10 48)); System.out.println('Maximum divisors that a number ' + 'has in [1 10] are ' + query(1 1 maxn - 1 1 10)); } } // This code is contributed by PrinciRaj1992
Python 3 # Python 3 implementation of the above # idea to process queries of finding a # number with maximum divisors. maxn = 1000005 INF = 99999999 smallest_prime = [0] * maxn divisors = [0] * maxn segmentTree = [0] * (4 * maxn) # Finds smallest prime factor of all # numbers in range[1 maxn) and stores # them in smallest_prime[] smallest_prime[i] # should contain the smallest prime that divides i def findSmallestPrimeFactors(): # Initialize the smallest_prime # factors of all to infinity for i in range(maxn ): smallest_prime[i] = INF # to be built like eratosthenes sieve for i in range(2 maxn): if (smallest_prime[i] == INF): # prime number will have its # smallest_prime equal to itself smallest_prime[i] = i for j in range(i * i maxn i): # if 'i' is the first prime # number reaching 'j' if (smallest_prime[j] > i): smallest_prime[j] = i # number of divisors of n = (p1 ^ k1) * # (p2 ^ k2) ... (pn ^ kn) are equal to # (k1+1) * (k2+1) ... (kn+1). This function # finds the number of divisors of all numbers # in range [1 maxn) and stores it in divisors[] # divisors[i] stores the number of divisors i has def buildDivisorsArray(): for i in range(1 maxn): divisors[i] = 1 n = i p = smallest_prime[i] k = 0 # we can obtain the prime factorization # of the number n n = (p1 ^ k1) * (p2 ^ k2) # ... (pn ^ kn) using the smallest_prime[] # array we keep dividing n by its # smallest_prime until it becomes 1 whilst # we check if we have need to set k zero while (n > 1): n = n // p k += 1 if (smallest_prime[n] != p): # use p^k initialize k to 0 divisors[i] = divisors[i] * (k + 1) k = 0 p = smallest_prime[n] # builds segment tree for divisors[] array def buildSegtmentTree( node a b): # leaf node if (a == b): segmentTree[node] = divisors[a] return #build left and right subtree buildSegtmentTree(2 * node a (a + b) // 2) buildSegtmentTree(2 * node + 1 ((a + b) // 2) + 1 b) #combine the information from left #and right subtree at current node segmentTree[node] = max(segmentTree[2 * node] segmentTree[2 * node + 1]) # returns the maximum number of # divisors in [l r] def query(node a b l r): # If current node's range is disjoint # with query range if (l > b or a > r): return -1 # If the current node stores information # for the range that is completely inside # the query range if (a >= l and b <= r): return segmentTree[node] # Returns maximum number of divisors # from left or right subtree return max(query(2 * node a (a + b) // 2 l r) query(2 * node + 1 ((a + b) // 2) + 1 b l r)) # Driver code if __name__ == '__main__': # First find smallest prime divisors # for all the numbers findSmallestPrimeFactors() # Then build the divisors[] array to # store the number of divisors buildDivisorsArray() # Build segment tree for the divisors[] array buildSegtmentTree(1 1 maxn - 1) print('Maximum divisors that a number has ' ' in [1 100] are ' query(1 1 maxn - 1 1 100)) print('Maximum divisors that a number has' ' in [10 48] are ' query(1 1 maxn - 1 10 48)) print( 'Maximum divisors that a number has' ' in [1 10] are ' query(1 1 maxn - 1 1 10)) # This code is contributed by ita_c
C# // C# implementation of the above idea // to process queries of finding a number // with maximum divisors. using System; class GFG { static int maxn = 10005; static int INF = 999999; static int []smallest_prime = new int[maxn]; static int []divisors = new int[maxn]; static int []segmentTree = new int[4 * maxn]; // Finds smallest prime factor of all numbers // in range[1 maxn) and stores them in // smallest_prime[] smallest_prime[i] should // contain the smallest prime that divides i static void findSmallestPrimeFactors() { // Initialize the smallest_prime // factors of all to infinity for (int i = 0 ; i < maxn ; i ++ ) smallest_prime[i] = INF; // to be built like eratosthenes sieve for (int i = 2; i < maxn; i++) { if (smallest_prime[i] == INF) { // prime number will have its // smallest_prime equal to itself smallest_prime[i] = i; for (int j = i * i; j < maxn; j += i) // if 'i' is the first // prime number reaching 'j' if (smallest_prime[j] > i) smallest_prime[j] = i; } } } // number of divisors of // n = (p1 ^ k1) * (p2 ^ k2) ... (pn ^ kn) // are equal to (k1+1) * (k2+1) ... (kn+1) // this function finds the number of divisors // of all numbers in range [1 maxn) and stores // it in divisors[] divisors[i] stores the // number of divisors i has static void buildDivisorsArray() { for (int i = 1; i < maxn; i++) { divisors[i] = 1; int n = i p = smallest_prime[i] k = 0; // we can obtain the prime factorization of // the number n // n = (p1 ^ k1) * (p2 ^ k2) ... (pn ^ kn) // using the smallest_prime[] array // we keep dividing n by its smallest_prime // until it becomes 1 whilst we check if // we have need to set k zero while (n > 1) { n = n / p; k ++; if (smallest_prime[n] != p) { // use p^k initialize k to 0 divisors[i] = divisors[i] * (k + 1); k = 0; } p = smallest_prime[n]; } } } // builds segment tree for divisors[] array static void buildSegtmentTree(int node int a int b) { // leaf node if (a == b) { segmentTree[node] = divisors[a]; return; } //build left and right subtree buildSegtmentTree(2 * node a (a + b) / 2); buildSegtmentTree(2 * node + 1 ((a + b) / 2) + 1 b); //combine the information from left //and right subtree at current node segmentTree[node] = Math.Max(segmentTree[2 * node] segmentTree[2 *node + 1]); } // returns the maximum number of divisors in [l r] static int query(int node int a int b int l int r) { // If current node's range is disjoint // with query range if (l > b || a > r) return -1; // If the current node stores information // for the range that is completely inside // the query range if (a >= l && b <= r) return segmentTree[node]; // Returns maximum number of divisors from left // or right subtree return Math.Max(query(2 * node a (a + b) / 2 l r) query(2 * node + 1 ((a + b) / 2) + 1 b l r)); } // Driver Code public static void Main(String[] args) { // First find smallest prime divisors // for all the numbers findSmallestPrimeFactors(); // Then build the divisors[] array // to store the number of divisors buildDivisorsArray(); // Build segment tree for the divisors[] array buildSegtmentTree(1 1 maxn - 1); Console.WriteLine('Maximum divisors that a number ' + 'has in [1 100] are ' + query(1 1 maxn - 1 1 100)); Console.WriteLine('Maximum divisors that a number ' + 'has in [10 48] are ' + query(1 1 maxn - 1 10 48)); Console.WriteLine('Maximum divisors that a number ' + 'has in [1 10] are ' + query(1 1 maxn - 1 1 10)); } } // This code is contributed by 29AjayKumar
JavaScript <script> // JavaScript implementation of the above idea to process // queries of finding a number with maximum divisors. let maxn = 10005; let INF = 999999; let smallest_prime = new Array(maxn); for(let i=0;i<maxn;i++) { smallest_prime[i]=0; } let divisors = new Array(maxn); for(let i=0;i<maxn;i++) { divisors[i]=0; } let segmentTree = new Array(4 * maxn); for(let i=0;i<4*maxn;i++) { segmentTree[i]=0; } // Finds smallest prime factor of all numbers // in range[1 maxn) and stores them in // smallest_prime[] smallest_prime[i] should // contain the smallest prime that divides i function findSmallestPrimeFactors() { // Initialize the smallest_prime factors // of all to infinity for (let i = 0 ; i < maxn ; i ++ ) smallest_prime[i] = INF; // to be built like eratosthenes sieve for (let i = 2; i < maxn; i++) { if (smallest_prime[i] == INF) { // prime number will have its // smallest_prime equal to itself smallest_prime[i] = i; for (let j = i * i; j < maxn; j += i) { // if 'i' is the first // prime number reaching 'j' if (smallest_prime[j] > i) smallest_prime[j] = i; } } } } // number of divisors of n = (p1 ^ k1) * (p2 ^ k2) ... (pn ^ kn) // are equal to (k1+1) * (k2+1) ... (kn+1) // this function finds the number of divisors of all numbers // in range [1 maxn) and stores it in divisors[] // divisors[i] stores the number of divisors i has function buildDivisorsArray() { for (let i = 1; i < maxn; i++) { divisors[i] = 1; let n = i; let p = smallest_prime[i] let k = 0; // we can obtain the prime factorization of // the number n n = (p1 ^ k1) * (p2 ^ k2) ... (pn ^ kn) // using the smallest_prime[] array we keep dividing n // by its smallest_prime until it becomes 1 // whilst we check if we have need to set k zero while (n > 1) { n = Math.floor(n / p); k++; if (smallest_prime[n] != p) { // use p^k initialize k to 0 divisors[i] = divisors[i] * (k + 1); k = 0; } p = smallest_prime[n]; } } } // builds segment tree for divisors[] array function buildSegtmentTree(nodeab) { // leaf node if (a == b) { segmentTree[node] = divisors[a]; return ; } //build left and right subtree buildSegtmentTree(2 * node a Math.floor((a + b) / 2)); buildSegtmentTree((2 * node) + 1 Math.floor((a + b) / 2) + 1 b); //combine the information from left //and right subtree at current node segmentTree[node] = Math.max(segmentTree[2 * node] segmentTree[(2 *node) + 1]); } // returns the maximum number of divisors in [l r] function query(nodeablr) { // If current node's range is disjoint // with query range if (l > b || a > r) return -1; // If the current node stores information // for the range that is completely inside // the query range if (a >= l && b <= r) return segmentTree[node]; // Returns maximum number of divisors from left // or right subtree return Math.max(query(2 * node a Math.floor((a + b) / 2) l r) query(2 * node + 1 Math.floor((a + b) / 2) + 1 b l r)); } // Driver Code // First find smallest prime divisors // for all the numbers findSmallestPrimeFactors(); // Then build the divisors[] array to store // the number of divisors buildDivisorsArray(); // Build segment tree for the divisors[] array buildSegtmentTree(1 1 maxn - 1); document.write('Maximum divisors that a number ' + 'has in [1 100] are ' + query(1 1 maxn - 1 1 100)+'
'); document.write('Maximum divisors that a number ' + 'has in [10 48] are ' + query(1 1 maxn - 1 10 48)+'
'); document.write('Maximum divisors that a number ' + 'has in [1 10] are ' + query(1 1 maxn - 1 1 10)+'
'); // This code is contributed by avanitrachhadiya2155 </script>
Sortir:
Maximum divisors that a number has in [1 100] are 12 Maximum divisors that a number has in [10 48] are 10 Maximum divisors that a number has in [1 10] are 4
Complexité temporelle : O((maxn + Q) * log(maxn))
- Pour le tamis : O(maxn * journal(log(maxn)) )
- Pour calculer les diviseurs de chaque nombre : Bien1 + k2 + ... + kn) < O(log(maxn))
- Pour interroger chaque plage : O(log(maxn))
Espace auxiliaire : Sur)
Sujet connexe :