Deux chaînes sont dites complètes si, lors de la concaténation, elles contiennent les 26 alphabets anglais. Par exemple, « abcdefghi » et « jklmnopqrstuvwxyz » sont complets car ils contiennent ensemble tous les caractères de « a » à « z ».
chiffres dans l'alphabet
On nous donne deux ensembles de tailles n et m respectivement et nous devons trouver le nombre de paires complètes lors de la concaténation de chaque chaîne de l'ensemble 1 à chaque chaîne de l'ensemble 2.
Input : set1[] = {'abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc'} set2[] = {'ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz'} Output : 7 The total complete pairs that are forming are: 'abcdefghijklmnopqrstuvwxyz' 'abcdefghabcdefghijklmnopqrstuvwxyz' 'abcdefghdefghijklmnopqrstuvwxyz' 'geeksforgeeksabcdefghijklmnopqrstuvwxyz' 'lmnopqrstabcdefghijklmnopqrstuvwxyz' 'abcabcdefghijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' Méthode 1 (méthode naïve) : Une solution simple consiste à considérer que toutes les paires de chaînes les concatènent, puis à vérifier si la chaîne concaténée contient tous les caractères de « a » à « z » en utilisant un tableau de fréquences.
Mise en œuvre:
C++// C++ implementation for find pairs of complete // strings. #include using namespace std; // Returns count of complete pairs from set[0..n-1] // and set2[0..m-1] int countCompletePairs(string set1[] string set2[] int n int m) { int result = 0; // Consider all pairs of both strings for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { // Create a concatenation of current pair string concat = set1[i] + set2[j]; // Compute frequencies of all characters // in the concatenated string. int frequency[26] = { 0 }; for (int k = 0; k < concat.length(); k++) frequency[concat[k] - 'a']++; // If frequency of any character is not // greater than 0 then this pair is not // complete. int i; for (i = 0; i < 26; i++) if (frequency[i] < 1) break; if (i == 26) result++; } } return result; } // Driver code int main() { string set1[] = { 'abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc' }; string set2[] = { 'ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz' }; int n = sizeof(set1) / sizeof(set1[0]); int m = sizeof(set2) / sizeof(set2[0]); cout << countCompletePairs(set1 set2 n m); return 0; }
Java // Java implementation for find pairs of complete // strings. class GFG { // Returns count of complete pairs from set[0..n-1] // and set2[0..m-1] static int countCompletePairs(String set1[] String set2[] int n int m) { int result = 0; // Consider all pairs of both strings for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { // Create a concatenation of current pair String concat = set1[i] + set2[j]; // Compute frequencies of all characters // in the concatenated String. int frequency[] = new int[26]; for (int k = 0; k < concat.length(); k++) { frequency[concat.charAt(k) - 'a']++; } // If frequency of any character is not // greater than 0 then this pair is not // complete. int k; for (k = 0; k < 26; k++) { if (frequency[k] < 1) { break; } } if (k == 26) { result++; } } } return result; } // Driver code static public void main(String[] args) { String set1[] = { 'abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc' }; String set2[] = { 'ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz' }; int n = set1.length; int m = set2.length; System.out.println(countCompletePairs(set1 set2 n m)); } } // This code is contributed by PrinciRaj19992
Python3 # Python3 implementation for find pairs of complete # strings. # Returns count of complete pairs from set[0..n-1] # and set2[0..m-1] def countCompletePairs(set1set2nm): result = 0 # Consider all pairs of both strings for i in range(n): for j in range(m): # Create a concatenation of current pair concat = set1[i] + set2[j] # Compute frequencies of all characters # in the concatenated String. frequency = [0 for i in range(26)] for k in range(len(concat)): frequency[ord(concat[k]) - ord('a')] += 1 # If frequency of any character is not # greater than 0 then this pair is not # complete. k = 0 while(k<26): if (frequency[k] < 1): break k += 1 if (k == 26): result += 1 return result # Driver code set1=['abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc'] set2=['ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz'] n = len(set1) m = len(set2) print(countCompletePairs(set1 set2 n m)) # This code is contributed by shinjanpatra
C# // C# implementation for find pairs of complete // strings. using System; class GFG { // Returns count of complete pairs from set[0..n-1] // and set2[0..m-1] static int countCompletePairs(string[] set1 string[] set2 int n int m) { int result = 0; // Consider all pairs of both strings for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { // Create a concatenation of current pair string concat = set1[i] + set2[j]; // Compute frequencies of all characters // in the concatenated String. int[] frequency = new int[26]; for (int k = 0; k < concat.Length; k++) { frequency[concat[k] - 'a']++; } // If frequency of any character is not // greater than 0 then this pair is not // complete. int l; for (l = 0; l < 26; l++) { if (frequency[l] < 1) { break; } } if (l == 26) { result++; } } } return result; } // Driver code static public void Main() { string[] set1 = { 'abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc' }; string[] set2 = { 'ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz' }; int n = set1.Length; int m = set2.Length; Console.Write(countCompletePairs(set1 set2 n m)); } } // This article is contributed by Ita_c.
JavaScript <script> // Javascript implementation for find pairs of complete // strings. // Returns count of complete pairs from set[0..n-1] // and set2[0..m-1] function countCompletePairs(set1set2nm) { let result = 0; // Consider all pairs of both strings for (let i = 0; i < n; i++) { for (let j = 0; j < m; j++) { // Create a concatenation of current pair let concat = set1[i] + set2[j]; // Compute frequencies of all characters // in the concatenated String. let frequency = new Array(26); for(let i= 0;i<26;i++) { frequency[i]=0; } for (let k = 0; k < concat.length; k++) { frequency[concat[k].charCodeAt(0) - 'a'.charCodeAt(0)]++; } // If frequency of any character is not // greater than 0 then this pair is not // complete. let k; for (k = 0; k < 26; k++) { if (frequency[k] < 1) { break; } } if (k == 26) { result++; } } } return result; } // Driver code let set1=['abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc']; let set2=['ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz'] let n = set1.length; let m=set2.length; document.write(countCompletePairs(set1 set2 n m)); // This code is contributed by avanitrachhadiya2155 </script>
Sortir
7
Complexité temporelle : O(n * m * k)
Espace auxiliaire : O(1)
Méthode 2 (méthode optimisée utilisant la manipulation de bits) : Dans cette méthode, nous compressons le tableau de fréquences en un entier. Nous attribuons à chaque bit de cet entier un caractère et nous le mettons à 1 lorsque le caractère est trouvé. Nous effectuons cela pour toutes les chaînes des deux ensembles. Enfin, nous comparons simplement les deux entiers dans les ensembles et si lors de la combinaison, tous les bits sont définis, ils forment une paire de chaînes complète.
chaîne java en caractère
Mise en œuvre:
C++14// C++ program to find count of complete pairs #include using namespace std; // Returns count of complete pairs from set[0..n-1] // and set2[0..m-1] int countCompletePairs(string set1[] string set2[] int n int m) { int result = 0; // con_s1[i] is going to store an integer whose // set bits represent presence/absence of characters // in string set1[i]. // Similarly con_s2[i] is going to store an integer // whose set bits represent presence/absence of // characters in string set2[i] int con_s1[n] con_s2[m]; // Process all strings in set1[] for (int i = 0; i < n; i++) { // initializing all bits to 0 con_s1[i] = 0; for (int j = 0; j < set1[i].length(); j++) { // Setting the ascii code of char s[i][j] // to 1 in the compressed integer. con_s1[i] = con_s1[i] | (1 << (set1[i][j] - 'a')); } } // Process all strings in set2[] for (int i = 0; i < m; i++) { // initializing all bits to 0 con_s2[i] = 0; for (int j = 0; j < set2[i].length(); j++) { // setting the ascii code of char s[i][j] // to 1 in the compressed integer. con_s2[i] = con_s2[i] | (1 << (set2[i][j] - 'a')); } } // assigning a variable whose all 26 (0..25) // bits are set to 1 long long complete = (1 << 26) - 1; // Now consider every pair of integer in con_s1[] // and con_s2[] and check if the pair is complete. for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { // if all bits are set the strings are // complete! if ((con_s1[i] | con_s2[j]) == complete) result++; } } return result; } // Driver code int main() { string set1[] = { 'abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc' }; string set2[] = { 'ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz' }; int n = sizeof(set1) / sizeof(set1[0]); int m = sizeof(set2) / sizeof(set2[0]); cout << countCompletePairs(set1 set2 n m); return 0; }
Java // Java program to find count of complete pairs class GFG { // Returns count of complete pairs from set[0..n-1] // and set2[0..m-1] static int countCompletePairs(String set1[] String set2[] int n int m) { int result = 0; // con_s1[i] is going to store an integer whose // set bits represent presence/absence of characters // in string set1[i]. // Similarly con_s2[i] is going to store an integer // whose set bits represent presence/absence of // characters in string set2[i] int[] con_s1 = new int[n]; int[] con_s2 = new int[m]; // Process all strings in set1[] for (int i = 0; i < n; i++) { // initializing all bits to 0 con_s1[i] = 0; for (int j = 0; j < set1[i].length(); j++) { // Setting the ascii code of char s[i][j] // to 1 in the compressed integer. con_s1[i] = con_s1[i] | (1 << (set1[i].charAt(j) - 'a')); } } // Process all strings in set2[] for (int i = 0; i < m; i++) { // initializing all bits to 0 con_s2[i] = 0; for (int j = 0; j < set2[i].length(); j++) { // setting the ascii code of char s[i][j] // to 1 in the compressed integer. con_s2[i] = con_s2[i] | (1 << (set2[i].charAt(j) - 'a')); } } // assigning a variable whose all 26 (0..25) // bits are set to 1 long complete = (1 << 26) - 1; // Now consider every pair of integer in con_s1[] // and con_s2[] and check if the pair is complete. for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { // if all bits are set the strings are // complete! if ((con_s1[i] | con_s2[j]) == complete) { result++; } } } return result; } // Driver code public static void main(String args[]) { String set1[] = { 'abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc' }; String set2[] = { 'ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz' }; int n = set1.length; int m = set2.length; System.out.println(countCompletePairs(set1 set2 n m)); } } // This code contributed by Rajput-Ji
C# // C# program to find count of complete pairs using System; class GFG { // Returns count of complete pairs from set[0..n-1] // and set2[0..m-1] static int countCompletePairs(String[] set1 String[] set2 int n int m) { int result = 0; // con_s1[i] is going to store an integer whose // set bits represent presence/absence of characters // in string set1[i]. // Similarly con_s2[i] is going to store an integer // whose set bits represent presence/absence of // characters in string set2[i] int[] con_s1 = new int[n]; int[] con_s2 = new int[m]; // Process all strings in set1[] for (int i = 0; i < n; i++) { // initializing all bits to 0 con_s1[i] = 0; for (int j = 0; j < set1[i].Length; j++) { // Setting the ascii code of char s[i][j] // to 1 in the compressed integer. con_s1[i] = con_s1[i] | (1 << (set1[i][j] - 'a')); } } // Process all strings in set2[] for (int i = 0; i < m; i++) { // initializing all bits to 0 con_s2[i] = 0; for (int j = 0; j < set2[i].Length; j++) { // setting the ascii code of char s[i][j] // to 1 in the compressed integer. con_s2[i] = con_s2[i] | (1 << (set2[i][j] - 'a')); } } // assigning a variable whose all 26 (0..25) // bits are set to 1 long complete = (1 << 26) - 1; // Now consider every pair of integer in con_s1[] // and con_s2[] and check if the pair is complete. for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { // if all bits are set the strings are // complete! if ((con_s1[i] | con_s2[j]) == complete) { result++; } } } return result; } // Driver code public static void Main(String[] args) { String[] set1 = { 'abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc' }; String[] set2 = { 'ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz' }; int n = set1.Length; int m = set2.Length; Console.WriteLine(countCompletePairs(set1 set2 n m)); } } // This code has been contributed by 29AjayKumar
Python3 # Python3 program to find count of complete pairs # Returns count of complete pairs from set[0..n-1] # and set2[0..m-1] def countCompletePairs(set1 set2 n m): result = 0 # con_s1[i] is going to store an integer whose # set bits represent presence/absence of characters # in set1[i]. # Similarly con_s2[i] is going to store an integer # whose set bits represent presence/absence of # characters in set2[i] con_s1 con_s2 = [0] * n [0] * m # Process all strings in set1[] for i in range(n): # initializing all bits to 0 con_s1[i] = 0 for j in range(len(set1[i])): # Setting the ascii code of char s[i][j] # to 1 in the compressed integer. con_s1[i] = con_s1[i] | (1 << (ord(set1[i][j]) - ord('a'))) # Process all strings in set2[] for i in range(m): # initializing all bits to 0 con_s2[i] = 0 for j in range(len(set2[i])): # setting the ascii code of char s[i][j] # to 1 in the compressed integer. con_s2[i] = con_s2[i] | (1 << (ord(set2[i][j]) - ord('a'))) # assigning a variable whose all 26 (0..25) # bits are set to 1 complete = (1 << 26) - 1 # Now consider every pair of integer in con_s1[] # and con_s2[] and check if the pair is complete. for i in range(n): for j in range(m): # if all bits are set the strings are # complete! if ((con_s1[i] | con_s2[j]) == complete): result += 1 return result # Driver code if __name__ == '__main__': set1 = ['abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc'] set2 = ['ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz'] n = len(set1) m = len(set2) print(countCompletePairs(set1 set2 n m)) # This code is contributed by mohit kumar 29
JavaScript <script> // Javascript program to find count of complete pairs // Returns count of complete pairs from set[0..n-1] // and set2[0..m-1] function countCompletePairs(set1set2nm) { let result = 0; // con_s1[i] is going to store an integer whose // set bits represent presence/absence of characters // in string set1[i]. // Similarly con_s2[i] is going to store an integer // whose set bits represent presence/absence of // characters in string set2[i] let con_s1 = new Array(n); let con_s2 = new Array(m); // Process all strings in set1[] for (let i = 0; i < n; i++) { // initializing all bits to 0 con_s1[i] = 0; for (let j = 0; j < set1[i].length; j++) { // Setting the ascii code of char s[i][j] // to 1 in the compressed integer. con_s1[i] = con_s1[i] | (1 << (set1[i][j].charCodeAt(0) - 'a'.charCodeAt(0))); } } // Process all strings in set2[] for (let i = 0; i < m; i++) { // initializing all bits to 0 con_s2[i] = 0; for (let j = 0; j < set2[i].length; j++) { // setting the ascii code of char s[i][j] // to 1 in the compressed integer. con_s2[i] = con_s2[i] | (1 << (set2[i][j].charCodeAt(0) - 'a'.charCodeAt(0))); } } // assigning a variable whose all 26 (0..25) // bits are set to 1 let complete = (1 << 26) - 1; // Now consider every pair of integer in con_s1[] // and con_s2[] and check if the pair is complete. for (let i = 0; i < n; i++) { for (let j = 0; j < m; j++) { // if all bits are set the strings are // complete! if ((con_s1[i] | con_s2[j]) == complete) { result++; } } } return result; } // Driver code let set1=['abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc']; let set2=['ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz' ] let n = set1.length; let m = set2.length; document.write(countCompletePairs(set1 set2 n m)); // This code is contributed by avanitrachhadiya2155 </script>
Sortir
7
Complexité temporelle : O(n*m) où n est la taille du premier ensemble et m est la taille du deuxième ensemble.
Espace auxiliaire : Sur)
Cet article est rédigé par Rishabh Jain .