logo

ACV pour l'arbre n-aire | Requête constante O(1)

Nous avons vu différentes méthodes avec différentes complexités temporelles pour calculer l'ACV dans un arbre n-aire : -

Méthode 1 : Méthode naïve (en calculant le chemin racine-nœud) | O(n) par requête  
Méthode 2 : Utilisation de la décomposition Sqrt | O(carré H)  
Méthode 3 : Utilisation de l'approche Sparse Matrix DP | O (connexion) 

Étudions une autre méthode qui a un temps de requête plus rapide que toutes les méthodes ci-dessus. Notre objectif sera donc de calculer l'ACV en temps constant ~ O(1) . Voyons comment nous pouvons y parvenir. 

Méthode 4 : Utilisation de la requête de plage minimale 

Nous avons discuté LCA et RMQ pour l'arbre binaire . Nous discutons ici de la conversion du problème LCA en problème RMQ pour un arbre n-aire. 

  Pre-requisites:-     LCA in Binary Tree using RMQ     RMQ using sparse table  

Concept clé : Dans cette méthode, nous réduirons notre problème LCA au problème RMQ (Range Minimum Query) sur un tableau statique. Une fois cela fait, nous associerons les requêtes minimales de plage aux requêtes LCA requises. 

La première étape consistera à décomposer l’arbre en un réseau linéaire plat. Pour ce faire, nous pouvons appliquer la marche d'Euler. La marche d'Euler donnera le parcours de pré-ordre du graphique. Nous allons donc effectuer une marche d'Euler sur l'arbre et stocker les nœuds dans un tableau au fur et à mesure que nous les visitons. Ce processus réduit l'arbre > 16901489_1309372785813855_1903972436_n' title=


Pensons maintenant en termes généraux : considérons deux nœuds quelconques de l'arborescence. Il y aura exactement un chemin reliant les deux nœuds et le nœud qui a la plus petite valeur de profondeur dans le chemin sera l'ACV des deux nœuds donnés.
Maintenant, prenons deux nœuds distincts, par exemple dans et v dans le tableau de marche d'Euler. Désormais, tous les éléments du chemin de u à v se situeront entre l'index des nœuds u et v dans le tableau de marche d'Euler. Il nous suffit donc de calculer le nœud avec la profondeur minimale entre l'index du nœud u et le nœud v dans le tableau d'Euler. 

Pour cela nous maintiendrons un autre tableau qui contiendra la profondeur de tous les nœuds correspondant à leur position dans le tableau de marche d'Euler afin que nous puissions y appliquer notre algorithme RMQ.

Vous trouverez ci-dessous le réseau de marche d'Euler parallèle à son réseau de suivi de profondeur. 

16934185_1309372782480522_1333490382_n' title=

combien de zéros dans 1 milliard


Exemple : - Considérons deux nœuds nœud 6 et nœud 7 dans le tableau euler. Pour calculer l'ACV du nœud 6 et du nœud 7, nous recherchons la plus petite valeur de profondeur pour tous les nœuds situés entre le nœud 6 et le nœud 7. 
Donc nœud 1 a le plus petit valeur de profondeur = 0 et c'est donc l'ACV pour le nœud 6 et le nœud 7.

' title=

Mise en œuvre:-  

We will be maintaining three arrays   1)  Euler Path   2)  Depth array   3)  First Appearance Index

Les tableaux Euler Path et Depth sont les mêmes que ceux décrits ci-dessus

Indice de première apparition FAI[] : Le tableau d’index de première apparition stockera l’index de la première position de chaque nœud du tableau Euler Path. FAI[i] = Première apparition du ième nœud dans le tableau Euler Walk. 

La mise en œuvre de la méthode ci-dessus est donnée ci-dessous : -

Mise en œuvre:

C++
// C++ program to demonstrate LCA of n-ary tree // in constant time. #include 'bits/stdc++.h' using namespace std; #define sz 101 vector < int > adj[sz]; // stores the tree vector < int > euler; // tracks the eulerwalk vector < int > depthArr; // depth for each node corresponding  // to eulerwalk int FAI[sz]; // stores first appearance index of every node int level[sz]; // stores depth for all nodes in the tree int ptr; // pointer to euler walk int dp[sz][18]; // sparse table int logn[sz]; // stores log values int p2[20]; // stores power of 2 void buildSparseTable(int n) {  // initializing sparse table  memset(dp-1sizeof(dp));  // filling base case values  for (int i=1; i<n; i++)  dp[i-1][0] = (depthArr[i]>depthArr[i-1])?i-1:i;  // dp to fill sparse table  for (int l=1; l<15; l++)  for (int i=0; i<n; i++)  if (dp[i][l-1]!=-1 and dp[i+p2[l-1]][l-1]!=-1)  dp[i][l] =  (depthArr[dp[i][l-1]]>depthArr[dp[i+p2[l-1]][l-1]])?  dp[i+p2[l-1]][l-1] : dp[i][l-1];  else  break; } int query(int lint r) {  int d = r-l;  int dx = logn[d];  if (l==r) return l;  if (depthArr[dp[l][dx]] > depthArr[dp[r-p2[dx]][dx]])  return dp[r-p2[dx]][dx];  else  return dp[l][dx]; } void preprocess() {  // memorizing powers of 2  p2[0] = 1;  for (int i=1; i<18; i++)  p2[i] = p2[i-1]*2;  // memorizing all log(n) values  int val = 1ptr=0;  for (int i=1; i<sz; i++)  {  logn[i] = ptr-1;  if (val==i)  {  val*=2;  logn[i] = ptr;  ptr++;  }  } } /**  * Euler Walk ( preorder traversal)  * converting tree to linear depthArray  * Time Complexity : O(n)  * */ void dfs(int curint prevint dep) {  // marking FAI for cur node  if (FAI[cur]==-1)  FAI[cur] = ptr;  level[cur] = dep;  // pushing root to euler walk  euler.push_back(cur);  // incrementing euler walk pointer  ptr++;  for (auto x:adj[cur])  {  if (x != prev)  {  dfs(xcurdep+1);  // pushing cur again in backtrack  // of euler walk  euler.push_back(cur);  // increment euler walk pointer  ptr++;  }  } } // Create Level depthArray corresponding // to the Euler walk Array void makeArr() {  for (auto x : euler)  depthArr.push_back(level[x]); } int LCA(int uint v) {  // trivial case  if (u==v)  return u;  if (FAI[u] > FAI[v])  swap(uv);  // doing RMQ in the required range  return euler[query(FAI[u] FAI[v])]; } void addEdge(int uint v) {  adj[u].push_back(v);  adj[v].push_back(u); } int main(int argc char const *argv[]) {  // constructing the described tree  int numberOfNodes = 8;  addEdge(12);  addEdge(13);  addEdge(24);  addEdge(25);  addEdge(26);  addEdge(37);  addEdge(38);  // performing required precalculations  preprocess();  // doing the Euler walk  ptr = 0;  memset(FAI-1sizeof(FAI));  dfs(100);  // creating depthArray corresponding to euler[]  makeArr();  // building sparse table  buildSparseTable(depthArr.size());  cout << 'LCA(67) : ' << LCA(67) << 'n';  cout << 'LCA(64) : ' << LCA(64) << 'n';  return 0; } 
Java
// Java program to demonstrate LCA of n-ary // tree in constant time. import java.util.ArrayList; import java.util.Arrays; class GFG{ static int sz = 101; @SuppressWarnings('unchecked') // Stores the tree static ArrayList<Integer>[] adj = new ArrayList[sz];  // Tracks the eulerwalk static ArrayList<Integer> euler = new ArrayList<>();  // Depth for each node corresponding static ArrayList<Integer> depthArr = new ArrayList<>();  // to eulerwalk // Stores first appearance index of every node static int[] FAI = new int[sz];  // Stores depth for all nodes in the tree static int[] level = new int[sz];  // Pointer to euler walk static int ptr; // Sparse table static int[][] dp = new int[sz][18]; // Stores log values static int[] logn = new int[sz]; // Stores power of 2 static int[] p2 = new int[20]; static void buildSparseTable(int n) {    // Initializing sparse table  for(int i = 0; i < sz; i++)  {  for(int j = 0; j < 18; j++)   {  dp[i][j] = -1;  }  }  // Filling base case values  for(int i = 1; i < n; i++)  dp[i - 1][0] = (depthArr.get(i) >   depthArr.get(i - 1)) ?   i - 1 : i;  // dp to fill sparse table  for(int l = 1; l < 15; l++)  for(int i = 0; i < n; i++)  if (dp[i][l - 1] != -1 &&  dp[i + p2[l - 1]][l - 1] != -1)  dp[i][l] = (depthArr.get(dp[i][l - 1]) >  depthArr.get(  dp[i + p2[l - 1]][l - 1])) ?   dp[i + p2[l - 1]][l - 1] :   dp[i][l - 1];  else  break; } static int query(int l int r)  {  int d = r - l;  int dx = logn[d];    if (l == r)  return l;    if (depthArr.get(dp[l][dx]) >   depthArr.get(dp[r - p2[dx]][dx]))  return dp[r - p2[dx]][dx];  else  return dp[l][dx]; } static void preprocess()  {    // Memorizing powers of 2  p2[0] = 1;  for(int i = 1; i < 18; i++)  p2[i] = p2[i - 1] * 2;  // Memorizing all log(n) values  int val = 1 ptr = 0;  for(int i = 1; i < sz; i++)   {  logn[i] = ptr - 1;  if (val == i)   {  val *= 2;  logn[i] = ptr;  ptr++;  }  } } // Euler Walk ( preorder traversal) converting // tree to linear depthArray  // Time Complexity : O(n) static void dfs(int cur int prev int dep) {    // Marking FAI for cur node  if (FAI[cur] == -1)  FAI[cur] = ptr;  level[cur] = dep;  // Pushing root to euler walk  euler.add(cur);  // Incrementing euler walk pointer  ptr++;  for(Integer x : adj[cur])  {  if (x != prev)  {  dfs(x cur dep + 1);  // Pushing cur again in backtrack  // of euler walk  euler.add(cur);  // Increment euler walk pointer  ptr++;  }  } } // Create Level depthArray corresponding // to the Euler walk Array static void makeArr() {  for(Integer x : euler)  depthArr.add(level[x]); } static int LCA(int u int v)  {    // Trivial case  if (u == v)  return u;  if (FAI[u] > FAI[v])  {  int temp = u;  u = v;  v = temp;  }  // Doing RMQ in the required range  return euler.get(query(FAI[u] FAI[v])); } static void addEdge(int u int v) {  adj[u].add(v);  adj[v].add(u); } // Driver code public static void main(String[] args) {  for(int i = 0; i < sz; i++)  {  adj[i] = new ArrayList<>();  }    // Constructing the described tree  int numberOfNodes = 8;  addEdge(1 2);  addEdge(1 3);  addEdge(2 4);  addEdge(2 5);  addEdge(2 6);  addEdge(3 7);  addEdge(3 8);  // Performing required precalculations  preprocess();  // Doing the Euler walk  ptr = 0;  Arrays.fill(FAI -1);  dfs(1 0 0);  // Creating depthArray corresponding to euler[]  makeArr();    // Building sparse table  buildSparseTable(depthArr.size());  System.out.println('LCA(67) : ' + LCA(6 7));  System.out.println('LCA(64) : ' + LCA(6 4)); } } // This code is contributed by sanjeev2552 
Python3
# Python program to demonstrate LCA of n-ary tree # in constant time. from typing import List # stores the tree adj = [[] for _ in range(101)] # tracks the eulerwalk euler = [] # depth for each node corresponding to eulerwalk depthArr = [] # stores first appearance index of every node FAI = [-1] * 101 # stores depth for all nodes in the tree level = [0] * 101 # pointer to euler walk ptr = 0 # sparse table dp = [[-1] * 18 for _ in range(101)] # stores log values logn = [0] * 101 # stores power of 2 p2 = [0] * 20 def buildSparseTable(n: int): # initializing sparse table for i in range(n): dp[i][0] = i-1 if depthArr[i] > depthArr[i-1] else i # dp to fill sparse table for l in range(1 15): for i in range(n): if dp[i][l-1] != -1 and dp[i+p2[l-1]][l-1] != -1: dp[i][l] = dp[i+p2[l-1]][l-1] if depthArr[dp[i][l-1] ] > depthArr[dp[i+p2[l-1]][l-1]] else dp[i][l-1] else: break def query(l: int r: int) -> int: d = r-l dx = logn[d] if l == r: return l if depthArr[dp[l][dx]] > depthArr[dp[r-p2[dx]][dx]]: return dp[r-p2[dx]][dx] else: return dp[l][dx] def preprocess(): global ptr # memorizing powers of 2 p2[0] = 1 for i in range(1 18): p2[i] = p2[i-1]*2 # memorizing all log(n) values val = 1 ptr = 0 for i in range(1 101): logn[i] = ptr-1 if val == i: val *= 2 logn[i] = ptr ptr += 1 def dfs(cur: int prev: int dep: int): global ptr # marking FAI for cur node if FAI[cur] == -1: FAI[cur] = ptr level[cur] = dep # pushing root to euler walk euler.append(cur) # incrementing euler walk pointer ptr += 1 for x in adj[cur]: if x != prev: dfs(x cur dep+1) # pushing cur again in backtrack # of euler walk euler.append(cur) # increment euler walk pointer ptr += 1 # Create Level depthArray corresponding # to the Euler walk Array def makeArr(): global depthArr for x in euler: depthArr.append(level[x]) def LCA(u: int v: int) -> int: # trivial case if u == v: return u if FAI[u] > FAI[v]: u v = v u # doing RMQ in the required range return euler[query(FAI[u] FAI[v])] def addEdge(u v): adj[u].append(v) adj[v].append(u) # constructing the described tree numberOfNodes = 8 addEdge(1 2) addEdge(1 3) addEdge(2 4) addEdge(2 5) addEdge(2 6) addEdge(3 7) addEdge(3 8) # performing required precalculations preprocess() # doing the Euler walk ptr = 0 FAI = [-1] * (numberOfNodes + 1) dfs(1 0 0) # creating depthArray corresponding to euler[] makeArr() # building sparse table buildSparseTable(len(depthArr)) print('LCA(67) : ' LCA(6 7)) print('LCA(64) : ' LCA(6 4)) 
C#
// C# program to demonstrate LCA of n-ary // tree in constant time. using System; using System.Collections.Generic; public class GFG {  static int sz = 101;  // Stores the tree  static List<int>[] adj = new List<int>[sz];    // Tracks the eulerwalk  static List<int> euler = new List<int>();    // Depth for each node corresponding  static List<int> depthArr = new List<int>();    // to eulerwalk  // Stores first appearance index of every node  static int[] FAI = new int[sz];    // Stores depth for all nodes in the tree  static int[] level = new int[sz];    // Pointer to euler walk  static int ptr;    // Sparse table  static int[] dp = new int[sz 18];    // Stores log values  static int[] logn = new int[sz];    // Stores power of 2  static int[] p2 = new int[20];    static void buildSparseTable(int n)  {  // Initializing sparse table  for(int i = 0; i < sz; i++)  {  for(int j = 0; j < 18; j++)   {  dp[ij] = -1;  }  }    // Filling base case values  for(int i = 1; i < n; i++)  dp[i - 10] = (depthArr[i] > depthArr[i - 1]) ? i - 1 : i;    // dp to fill sparse table  for(int l = 1; l < 15; l++)  for(int i = 0; i < n; i++)  if (dp[il - 1] != -1 && dp[i + p2[l - 1]l - 1] != -1)  dp[il] = (depthArr[dp[il - 1]] > depthArr[dp[i + p2[l - 1]l - 1]]) ? dp[i + p2[l - 1]l - 1] : dp[il - 1];  else  break;  }    static int query(int l int r)   {  int d = r - l;  int dx = logn[d];    if (l == r)  return l;    if (depthArr[dp[ldx]] > depthArr[dp[r - p2[dx]dx]])  return dp[r - p2[dx]dx];  else  return dp[ldx];  }    static void preprocess()   {  // Memorizing powers of 2  p2[0] = 1;  for(int i = 1; i < 18; i++)  p2[i] = p2[i - 1] * 2;    // Memorizing all log(n) values  int val = 1 ptr = 0;  for(int i = 1; i < sz; i++)   {  logn[i] = ptr - 1;  if (val == i)   {  val *= 2;  logn[i] = ptr;  ptr++;  }  }  }    // Euler Walk ( preorder traversal) converting  // tree to linear depthArray   // Time Complexity : O(n)  static void dfs(int cur int prev int dep)  {  // Marking FAI for cur node  if (FAI[cur] == -1)  FAI[cur] = ptr;    level[cur] = dep;    // Pushing root to euler walk  euler.Add(cur);    // Incrementing euler walk pointer  ptr++;    foreach (int x in adj[cur])  {  if (x != prev)  {  dfs(x cur dep + 1);    euler.Add(cur);    ptr++;  }  }  }    // Create Level depthArray corresponding  // to the Euler walk Array  static void makeArr()  {  foreach (int x in euler)  depthArr.Add(level[x]);  }    static int LCA(int u int v)   {  // Trivial case  if (u == v)  return u;    if (FAI[u] > FAI[v])  {  int temp = u;  u = v;  v = temp;  }    // Doing RMQ in the required range  return euler[query(FAI[u] FAI[v])];  }    static void addEdge(int u int v)  {  adj[u].Add(v);  adj[v].Add(u);  }  // Driver Code  static void Main(string[] args)  {  int sz = 9;  adj = new List<int>[sz];  for (int i = 0; i < sz; i++)  {  adj[i] = new List<int>();  }  // Constructing the described tree  int numberOfNodes = 8;  addEdge(1 2);  addEdge(1 3);  addEdge(2 4);  addEdge(2 5);  addEdge(2 6);  addEdge(3 7);  addEdge(3 8);  // Performing required precalculations  preprocess();  // Doing the Euler walk  ptr = 0;  Array.Fill(FAI -1);  dfs(1 0 0);  // Creating depthArray corresponding to euler[]  makeArr();  // Building sparse table  buildSparseTable(depthArr.Count);  Console.WriteLine('LCA(67) : ' + LCA(6 7));  Console.WriteLine('LCA(64) : ' + LCA(6 4));  }   } // This code is contributed by Prince Kumar 
JavaScript
let adj = []; for (let _ = 0; _ < 101; _++) {  adj.push([]); } // tracks the eulerwalk let euler = []; // depth for each node corresponding to eulerwalk let depthArr = []; // stores first appearance index of every node let FAI = new Array(101).fill(-1); // stores depth for all nodes in the tree let level = new Array(101).fill(0); // pointer to euler walk let ptr = 0; // sparse table let dp = []; for (let _ = 0; _ < 101; _++) {  dp.push(new Array(18).fill(-1)); } // stores log values let logn = new Array(101).fill(0); // stores power of 2 let p2 = new Array(20).fill(0); function buildSparseTable(n) {  // initializing sparse table  for (let i = 0; i < n; i++) {  dp[i][0] = i - 1 >= 0 && depthArr[i] > depthArr[i - 1] ? i - 1 : i;  }  // dp to fill sparse table  for (let l = 1; l < 15; l++) {  for (let i = 0; i < n; i++) {  if (  dp[i][l - 1] !== -1 &&  dp[i + p2[l - 1]][l - 1] !== -1  ) {  dp[i][l] =  depthArr[dp[i][l - 1]] >  depthArr[dp[i + p2[l - 1]][l - 1]]  ? dp[i + p2[l - 1]][l - 1]  : dp[i][l - 1];  } else {  break;  }  }  } } function query(l r) {  let d = r - l;  let dx = logn[d];  if (l === r) {  return l;  }  if (depthArr[dp[l][dx]] > depthArr[dp[r - p2[dx]][dx]]) {  return dp[r - p2[dx]][dx];  } else {  return dp[l][dx];  } } function preprocess() {  // memorizing powers of 2  p2[0] = 1;  for (let i = 1; i < 18; i++) {  p2[i] = p2[i - 1] * 2;  }  // memorizing all log(n) values  let val = 1;  ptr = 0;  for (let i = 1; i < 101; i++) {  logn[i] = ptr - 1;  if (val === i) {  val *= 2;  logn[i] = ptr;  ptr += 1;  }  } } function dfs(cur prev dep) {  // marking FAI for cur node  if (FAI[cur] === -1) {  FAI[cur] = ptr;  }  level[cur] = dep;  // pushing root to euler walk  euler.push(cur);  // incrementing euler walk pointer  ptr += 1;  for (let x of adj[cur]) {  if (x !== prev) {  dfs(x cur dep + 1);  // pushing cur again in backtrack  // of euler walk  euler.push(cur);  // increment euler walk pointer  ptr += 1;  }  } } // Create Level depthArray corresponding // to the Euler walk Array function makeArr() {  for (let x of euler) {  depthArr.push(level[x]);  } } function LCA(u v) {  // trivial case  if (u === v) {  return u;  }  if (FAI[u] > FAI[v]) {  [u v] = [v u];  }  // doing RMQ in the required range  return euler[query(FAI[u] FAI[v])]; } function addEdge(u v) {  adj[u].push(v);  adj[v].push(u); } // constructing the described tree let numberOfNodes = 8; addEdge(1 2); addEdge(1 3); addEdge(2 4); addEdge(2 5); addEdge(2 6); addEdge(3 7); addEdge(3 8); // performing required precalculations preprocess(); // doing the Euler walk ptr = 0; FAI = new Array(numberOfNodes + 1).fill(-1); dfs(1 0 0); // creating depthArray corresponding to euler[] makeArr(); // building sparse table buildSparseTable(depthArr.length); console.log('LCA(67) : ' LCA(6 7)); console.log('LCA(64) : ' LCA(6 4)); 

Sortir
LCA(67) : 1 LCA(64) : 2

Note : Nous précalculons toute la puissance requise des 2 et précalculons également toutes les valeurs de journal requises pour garantir une complexité temporelle constante par requête. Sinon, si nous avions effectué un calcul de journal pour chaque opération de requête, notre complexité temporelle n'aurait pas été constante.

essayer la structure des données

Complexité temporelle : Le processus de conversion de LCA en RMQ est effectué par Euler Walk qui prend Sur) temps. 
Le prétraitement de la table clairsemée dans RMQ prend un temps O(nlogn) et répondre à chaque requête est un processus à temps constant. Par conséquent, la complexité temporelle globale est O(nlogn) - prétraitement et O(1) pour chaque requête.

Espace auxiliaire : O(n+s)

 

Créer un quiz