logo

Trouver la séquence de serpents de longueur maximale

Étant donné une grille de nombres, trouvez la séquence de serpents de longueur maximale et imprimez-la. Si plusieurs séquences de serpents existent avec la longueur maximale, imprimez l'une d'entre elles.

programmation r en c

Une séquence de serpent est composée de nombres adjacents dans la grille de telle sorte que pour chaque nombre, le nombre à droite ou le nombre ci-dessous est +1 ou -1 sa valeur. Par exemple, si vous êtes à l'emplacement (x y) dans la grille, vous pouvez soit vous déplacer à droite, c'est-à-dire (x y + 1) si ce nombre est ± 1 ou se déplacer vers le bas, c'est-à-dire (x + 1 y) si ce nombre est ± 1.



For example   9   6 5 2    8 7 6 5    7 3 1   6    1 1 1   7   In above grid the longest snake sequence is: (9 8 7 6 5 6 7)

La figure ci-dessous montre tous les chemins possibles:

desence snakesse' title=

Nous vous recommandons fortement de minimiser votre navigateur et de l'essayer vous-même d'abord.



L'idée est d'utiliser la programmation dynamique. Pour chaque cellule de la matrice, nous maintenons la longueur maximale d'un serpent qui se termine dans la cellule actuelle. La séquence de serpents de longueur maximale aura une valeur maximale. La cellule de valeur maximale correspondra à la queue du serpent. Afin d'imprimer le serpent, nous devons revenir en arrière de la queue jusqu'à la tête de Snake.

réseau neuronal artificiel
Let   T[i][i]   represent maximum length of a snake which ends at cell (i j) then for given matrix M the DP relation is defined as T[0][0] = 0  T[i][j] = max(T[i][j] T[i][j - 1] + 1) if M[i][j] = M[i][j - 1] ± 1  T[i][j] = max(T[i][j] T[i - 1][j] + 1) if M[i][j] = M[i - 1][j] ± 1

Vous trouverez ci-dessous la mise en œuvre de l'idée 

C++
// C++ program to find maximum length // Snake sequence and print it #include    using namespace std; #define M 4 #define N 4 struct Point {  int x y; }; // Function to find maximum length Snake sequence path // (i j) corresponds to tail of the snake list<Point> findPath(int grid[M][N] int mat[M][N]  int i int j) {  list<Point> path;  Point pt = {i j};  path.push_front(pt);  while (grid[i][j] != 0)  {  if (i > 0 &&  grid[i][j] - 1 == grid[i - 1][j])  {  pt = {i - 1 j};  path.push_front(pt);  i--;  }  else if (j > 0 &&  grid[i][j] - 1 == grid[i][j - 1])  {  pt = {i j - 1};  path.push_front(pt);  j--;  }  }  return path; } // Function to find maximum length Snake sequence void findSnakeSequence(int mat[M][N]) {  // table to store results of subproblems  int lookup[M][N];  // initialize by 0  memset(lookup 0 sizeof lookup);  // stores maximum length of Snake sequence  int max_len = 0;  // store coordinates to snake's tail  int max_row = 0;  int max_col = 0;  // fill the table in bottom-up fashion  for (int i = 0; i < M; i++)  {  for (int j = 0; j < N; j++)  {  // do except for (0 0) cell  if (i || j)  {  // look above  if (i > 0 &&  abs(mat[i - 1][j] - mat[i][j]) == 1)  {  lookup[i][j] = max(lookup[i][j]  lookup[i - 1][j] + 1);  if (max_len < lookup[i][j])  {  max_len = lookup[i][j];  max_row = i max_col = j;  }  }  // look left  if (j > 0 &&  abs(mat[i][j - 1] - mat[i][j]) == 1)  {  lookup[i][j] = max(lookup[i][j]  lookup[i][j - 1] + 1);  if (max_len < lookup[i][j])  {  max_len = lookup[i][j];  max_row = i max_col = j;  }  }  }  }  }  cout << 'Maximum length of Snake sequence is: '  << max_len << endl;  // find maximum length Snake sequence path  list<Point> path = findPath(lookup mat max_row  max_col);  cout << 'Snake sequence is:';  for (auto it = path.begin(); it != path.end(); it++)  cout << endl << mat[it->x][it->y] << ' ('  << it->x << ' ' << it->y << ')' ; } // Driver code int main() {  int mat[M][N] =  {  {9 6 5 2}  {8 7 6 5}  {7 3 1 6}  {1 1 1 7}  };  findSnakeSequence(mat);  return 0; } 
Java
// Java program to find maximum length // Snake sequence and print it import java.util.*; class GFG  { static int M = 4; static int N = 4; static class Point {  int x y;  public Point(int x int y)   {  this.x = x;  this.y = y;  } }; // Function to find maximum length Snake sequence path // (i j) corresponds to tail of the snake static List<Point> findPath(int grid[][]   int mat[][]   int i int j) {  List<Point> path = new LinkedList<>();  Point pt = new Point(i j);  path.add(0 pt);  while (grid[i][j] != 0)  {  if (i > 0 &&  grid[i][j] - 1 == grid[i - 1][j])  {  pt = new Point(i - 1 j);  path.add(0 pt);  i--;  }  else if (j > 0 && grid[i][j] - 1 ==   grid[i][j - 1])  {  pt = new Point(i j - 1);  path.add(0 pt);  j--;  }  }  return path; } // Function to find maximum length Snake sequence static void findSnakeSequence(int mat[][]) {  // table to store results of subproblems  int [][]lookup = new int[M][N];  // initialize by 0  // stores maximum length of Snake sequence  int max_len = 0;  // store coordinates to snake's tail  int max_row = 0;  int max_col = 0;  // fill the table in bottom-up fashion  for (int i = 0; i < M; i++)  {  for (int j = 0; j < N; j++)  {  // do except for (0 0) cell  if (i != 0 || j != 0)  {  // look above  if (i > 0 &&  Math.abs(mat[i - 1][j] -   mat[i][j]) == 1)  {  lookup[i][j] = Math.max(lookup[i][j]  lookup[i - 1][j] + 1);  if (max_len < lookup[i][j])  {  max_len = lookup[i][j];  max_row = i; max_col = j;  }  }  // look left  if (j > 0 &&  Math.abs(mat[i][j - 1] -   mat[i][j]) == 1)  {  lookup[i][j] = Math.max(lookup[i][j]  lookup[i][j - 1] + 1);  if (max_len < lookup[i][j])  {  max_len = lookup[i][j];  max_row = i; max_col = j;  }  }  }  }  }  System.out.print('Maximum length of Snake ' +   'sequence is: ' + max_len + 'n');  // find maximum length Snake sequence path  List<Point> path = findPath(lookup mat max_row  max_col);  System.out.print('Snake sequence is:');  for (Point it : path)  System.out.print('n' + mat[it.x][it.y] + ' (' +   it.x + ' ' + it.y + ')'); } // Driver code public static void main(String[] args) {  int mat[][] = {{9 6 5 2}  {8 7 6 5}  {7 3 1 6}  {1 1 1 7}};  findSnakeSequence(mat); } } // This code is contributed by 29AjayKumar 
C#
// C# program to find maximum length // Snake sequence and print it using System; using System.Collections.Generic; class GFG {  static int M = 4;  static int N = 4;  public class Point {  public int x y;  public Point(int x int y)  {  this.x = x;  this.y = y;  }  };  // Function to find maximum length Snake sequence path  // (i j) corresponds to tail of the snake  static List<Point> findPath(int[ ] grid int[ ] mat  int i int j)  {  List<Point> path = new List<Point>();  Point pt = new Point(i j);  path.Insert(0 pt);  while (grid[i j] != 0) {  if (i > 0 && grid[i j] - 1 == grid[i - 1 j]) {  pt = new Point(i - 1 j);  path.Insert(0 pt);  i--;  }  else if (j > 0  && grid[i j] - 1 == grid[i j - 1]) {  pt = new Point(i j - 1);  path.Insert(0 pt);  j--;  }  }  return path;  }  // Function to find maximum length Snake sequence  static void findSnakeSequence(int[ ] mat)  {  // table to store results of subproblems  int[ ] lookup = new int[M N];  // initialize by 0  // stores maximum length of Snake sequence  int max_len = 0;  // store coordinates to snake's tail  int max_row = 0;  int max_col = 0;  // fill the table in bottom-up fashion  for (int i = 0; i < M; i++) {  for (int j = 0; j < N; j++) {  // do except for (0 0) cell  if (i != 0 || j != 0) {  // look above  if (i > 0  && Math.Abs(mat[i - 1 j]  - mat[i j])  == 1) {  lookup[i j] = Math.Max(  lookup[i j]  lookup[i - 1 j] + 1);  if (max_len < lookup[i j]) {  max_len = lookup[i j];  max_row = i;  max_col = j;  }  }  // look left  if (j > 0  && Math.Abs(mat[i j - 1]  - mat[i j])  == 1) {  lookup[i j] = Math.Max(  lookup[i j]  lookup[i j - 1] + 1);  if (max_len < lookup[i j]) {  max_len = lookup[i j];  max_row = i;  max_col = j;  }  }  }  }  }  Console.Write('Maximum length of Snake '  + 'sequence is: ' + max_len + 'n');  // find maximum length Snake sequence path  List<Point> path  = findPath(lookup mat max_row max_col);  Console.Write('Snake sequence is:');  foreach(Point it in path)  Console.Write('n' + mat[it.x it.y] + ' ('  + it.x + ' ' + it.y + ')');  }  // Driver code  public static void Main(String[] args)  {  int[ ] mat = { { 9 6 5 2 }  { 8 7 6 5 }  { 7 3 1 6 }  { 1 1 1 7 } };  findSnakeSequence(mat);  } } // This code is contributed by Princi Singh 
Python3
def snakesequence(S m n): sequence = {} DP = [[1 for x in range(m+1)] for x in range(n+1)] a b maximum = 0 0 0 position = [0 0] for i in range(0 n+1): for j in range(0 m+1): a b = 0 0 p = 'initial' if(i > 0 and abs(S[i][j] - S[i-1][j]) == 1): a = DP[i-1][j] if(j > 0 and abs(S[i][j] - S[i][j-1]) == 1): b = DP[i][j-1] if a != 0 and a >= b: p = str(i-1) + ' ' + str(j) elif b != 0: p = str(i) + ' ' + str(j-1) q = str(i) + ' ' + str(j) sequence[q] = p DP[i][j] = DP[i][j] + max(a b) if DP[i][j] >= maximum: maximum = DP[i][j] position[0] = i position[1] = j snakeValues = [] snakePositions = [] snakeValues.append(S[position[0]][position[1]]) check = 'found' str_next = str(position[0]) + ' ' + str(position[1]) findingIndices = sequence[str_next].split() while(check == 'found'): if sequence[str_next] == 'initial': snakePositions.insert(0 str_next) check = 'end' continue findingIndices = sequence[str_next].split() g = int(findingIndices[0]) h = int(findingIndices[1]) snakeValues.insert(0 S[g][h]) snake_position = str(g) + ' ' + str(h) snakePositions.insert(0 str_next) str_next = sequence[str_next] return [snakeValues snakePositions] S = [[9 6 5 2] [8 7 6 5] [7 3 1 6] [1 1 10 7]] m = 3 n = 3 seq = snakesequence(S m n) for i in range(len(seq[0])): print(seq[0][i] '' seq[1][i].split()) 
JavaScript
function snakesequence(S m n) {  let sequence = {}  let DP = new Array(n + 1)  for (var i = 0; i <= n; i++)  DP[i] = new Array(m + 1).fill(1)  let a = 0 b = 0 maximum = 0  let position = [0 0]  for (var i = 0; i <= n; i++)  {  for (var j = 0; j <= m; j++)   {  a = 0  b = 0  let p = 'initial'  if(i > 0 && Math.abs(S[i][j] - S[i-1][j]) == 1)  a = DP[i-1][j]  if(j > 0 && Math.abs(S[i][j] - S[i][j-1]) == 1)  b = DP[i][j-1]  if (a != 0 && a >= b)  p = String(i-1) + ' ' + String(j)  else if (b != 0)  p = String(i) + ' ' + String(j-1)  let q = String(i) + ' ' + String(j)  sequence[q] = p  DP[i][j] = DP[i][j] + Math.max(a b)  if (DP[i][j] >= maximum)  {  maximum = DP[i][j]  position[0] = i  position[1] = j  }  }  }  let snakeValues = []  let snakePositions = []  snakeValues.push(S[position[0]][position[1]])  let check = 'found'  let String_next = String(position[0]) + ' ' + String(position[1])  let findingIndices = sequence[String_next].split(' ')  while(check == 'found')  {  if (sequence[String_next] == 'initial')  {  snakePositions.unshift(String_next)  check = 'end'  continue  }  findingIndices = sequence[String_next].split(' ')  let g = parseInt(findingIndices[0])  let h = parseInt(findingIndices[1])  snakeValues.unshift(S[g][h])  let snake_position = String(g) + ' ' + String(h)  snakePositions.unshift(String_next)  String_next = sequence[String_next]  }  return [snakeValues snakePositions] } // Driver Code  let S = [[9 6 5 2]  [8 7 6 5]  [7 3 1 6]  [1 1 10 7]] let m = 3 let n = 3 let seq = snakesequence(S m n) for (var i = 0; i < seq[0].length; i++)   console.log(seq[0][i] + '' seq[1][i].split(' ')) 

Sortir
Maximum length of Snake sequence is: 6 Snake sequence is: 9 (0 0) 8 (1 0) 7 (1 1) 6 (1 2) 5 (1 3) 6 (2 3) 7 (3 3)

La complexité du temps de la solution ci-dessus est O (m * n). L'espace auxiliaire utilisé par la solution ci-dessus est O (m * n). Si nous ne sommes pas tenus d'imprimer, l'espace de serpent peut être encore réduit à O (n) car nous n'utilisons que le résultat de la dernière ligne.