logo

Comptez le maximum de points sur la même ligne

Essayez-le sur GfG Practice ' title=

Étant donné n point sur un plan 2D sous forme de paire de coordonnées (x y), nous devons trouver le nombre maximum de points qui se trouvent sur la même ligne.

Exemples : 

Saisir : points[] = {-1 1} {0 0} {1 1}
{2 2} {3 3} {3 4}
Sortir : 4
Puis nombre maximum de points qui se trouvent sur le même
la ligne est 4, ces points sont {0 0} {1 1} {2 2}
{3 3}



Pour chaque point p, calculez sa pente avec d'autres points et utilisez une carte pour enregistrer combien de points ont la même pente grâce à laquelle nous pouvons savoir combien de points sont sur la même ligne avec p comme point unique. Pour chaque point, continuez à faire la même chose et mettez à jour le nombre maximum de points trouvé jusqu'à présent.

Certaines choses à noter lors de la mise en œuvre sont : 

  1. si deux points sont (x1 y1) et (x2 y2) alors leur pente sera (y2 – y1) / (x2 – x1) qui peut être une valeur double et causer des problèmes de précision. Pour nous débarrasser des problèmes de précision, nous traitons la pente comme une paire ((y2 - y1) (x2 – x1)) au lieu d'un rapport et réduisons la paire de leur pgcd avant de l'insérer dans la carte. Ci-dessous, les points de code verticaux ou répétés sont traités séparément.
  2. Si nous utilisons Hash Map ou Dictionary pour stocker la paire de pentes, alors la complexité temporelle totale de la solution sera O(n^2) et la complexité spatiale sera O(n).
C++
/* C/C++ program to find maximum number of point which lie on same line */ #include    #include    using namespace std; // method to find maximum collinear point int maxPointOnSameLine(vector< pair<int int> > points) {  int N = points.size();  if (N < 2)  return N;  int maxPoint = 0;  int curMax overlapPoints verticalPoints;  // here since we are using unordered_map   // which is based on hash function   //But by default we don't have hash function for pairs  //so we'll use hash function defined in Boost library  unordered_map<pair<int int> intboost::  hash<pair<int int> > > slopeMap;  // looping for each point  for (int i = 0; i < N; i++)  {  curMax = overlapPoints = verticalPoints = 0;  // looping from i + 1 to ignore same pair again  for (int j = i + 1; j < N; j++)  {  // If both point are equal then just  // increase overlapPoint count  if (points[i] == points[j])  overlapPoints++;  // If x co-ordinate is same then both  // point are vertical to each other  else if (points[i].first == points[j].first)  verticalPoints++;  else  {  int yDif = points[j].second - points[i].second;  int xDif = points[j].first - points[i].first;  int g = __gcd(xDif yDif);  // reducing the difference by their gcd  yDif /= g;  xDif /= g;  // increasing the frequency of current slope  // in map  slopeMap[make_pair(yDif xDif)]++;  curMax = max(curMax slopeMap[make_pair(yDif xDif)]);  }  curMax = max(curMax verticalPoints);  }  // updating global maximum by current point's maximum  maxPoint = max(maxPoint curMax + overlapPoints + 1);  // printf('maximum collinear point   // which contains current point   // are : %dn' curMax + overlapPoints + 1);  slopeMap.clear();  }  return maxPoint; } // Driver code int main() {  const int N = 6;  int arr[N][2] = {{-1 1} {0 0} {1 1} {2 2}  {3 3} {3 4}};  vector< pair<int int> > points;  for (int i = 0; i < N; i++)  points.push_back(make_pair(arr[i][0] arr[i][1]));  cout << maxPointOnSameLine(points) << endl;  return 0; } 
Java
/* Java program to find maximum number of point which lie on same line */ import java.util.*; class GFG {  static int gcd(int p int q)  {  if (q == 0) {  return p;  }  int r = p % q;  return gcd(q r);  }  static int N = 6;  // method to find maximum collinear point  static int maxPointOnSameLine(int[][] points)  {  if (N < 2)  return N;  int maxPoint = 0;  int curMax overlapPoints verticalPoints;  HashMap<String Integer> slopeMap = new HashMap<>();  // looping for each point  for (int i = 0; i < N; i++) {  curMax = overlapPoints = verticalPoints = 0;  // looping from i + 1 to ignore same pair again  for (int j = i + 1; j < N; j++) {  // If both point are equal then just  // increase overlapPoint count  if (points[i][0] == points[j][0]  && points[i][1] == points[j][1])  overlapPoints++;  // If x co-ordinate is same then both  // point are vertical to each other  else if (points[i][0] == points[j][0])  verticalPoints++;  else {  int yDif = points[j][1] - points[i][1];  int xDif = points[j][0] - points[i][0];  int g = gcd(xDif yDif);  // reducing the difference by their gcd  yDif /= g;  xDif /= g;  // Convert the pair into a string to use  // as dictionary key  String pair = (yDif) + ' ' + (xDif);  if (!slopeMap.containsKey(pair))  slopeMap.put(pair 0);  // increasing the frequency of current  // slope in map  slopeMap.put(pair  slopeMap.get(pair) + 1);  curMax = Math.max(curMax  slopeMap.get(pair));  }  curMax = Math.max(curMax verticalPoints);  }  // updating global maximum by current point's  // maximum  maxPoint = Math.max(maxPoint  curMax + overlapPoints + 1);  slopeMap.clear();  }  return maxPoint;  }  public static void main(String[] args)  {  int points[][] = { { -1 1 } { 0 0 } { 1 1 }  { 2 2 } { 3 3 } { 3 4 } };  System.out.println(maxPointOnSameLine(points));  } } 
Python
# python3 program to find maximum number of 2D points that lie on the same line. from collections import defaultdict from math import gcd from typing import DefaultDict List Tuple IntPair = Tuple[int int] def normalized_slope(a: IntPair b: IntPair) -> IntPair:  '''  Returns normalized (rise run) tuple. We won't return the actual rise/run  result in order to avoid floating point math which leads to faulty  comparisons.  See  https://en.wikipedia.org/wiki/Floating-point_arithmetic#Accuracy_problems  ''' run = b[0] - a[0] # normalize undefined slopes to (1 0) if run == 0: return (1 0) # normalize to left-to-right if run < 0: a b = b a run = b[0] - a[0] rise = b[1] - a[1] # Normalize by greatest common divisor. # math.gcd only works on positive numbers. gcd_ = gcd(abs(rise) run) return ( rise // gcd_ run // gcd_ ) def maximum_points_on_same_line(points: List[List[int]]) -> int: # You need at least 3 points to potentially have non-collinear points. # For [0 2] points all points are on the same line. if len(points) < 3: return len(points) # Note that every line we find will have at least 2 points. # There will be at least one line because len(points) >= 3. # Therefore it's safe to initialize to 0. max_val = 0 for a_index in range(0 len(points) - 1): # All lines in this iteration go through point a. # Note that lines a-b and a-c cannot be parallel. # Therefore if lines a-b and a-c have the same slope they're the same # line. a = tuple(points[a_index]) # Fresh lines already have a so default=1 slope_counts: DefaultDict[IntPair int] = defaultdict(lambda: 1) for b_index in range(a_index + 1 len(points)): b = tuple(points[b_index]) slope_counts[normalized_slope(a b)] += 1 max_val = max( max_val max(slope_counts.values()) ) return max_val print(maximum_points_on_same_line([ [-1 1] [0 0] [1 1] [2 2] [3 3] [3 4] ])) # This code is contributed by Jose Alvarado Torre 
C#
/* C# program to find maximum number of point which lie on same line */ using System; using System.Collections.Generic; class GFG {  static int gcd(int p int q)  {  if (q == 0) {  return p;  }  int r = p % q;  return gcd(q r);  }  static int N = 6;  // method to find maximum collinear point  static int maxPointOnSameLine(int[ ] points)  {  if (N < 2)  return N;  int maxPoint = 0;  int curMax overlapPoints verticalPoints;  Dictionary<string int> slopeMap  = new Dictionary<string int>();  // looping for each point  for (int i = 0; i < N; i++) {  curMax = overlapPoints = verticalPoints = 0;  // looping from i + 1 to ignore same pair again  for (int j = i + 1; j < N; j++) {  // If both point are equal then just  // increase overlapPoint count  if (points[i 0] == points[j 0]  && points[i 1] == points[j 1])  overlapPoints++;  // If x co-ordinate is same then both  // point are vertical to each other  else if (points[i 0] == points[j 0])  verticalPoints++;  else {  int yDif = points[j 1] - points[i 1];  int xDif = points[j 0] - points[i 0];  int g = gcd(xDif yDif);  // reducing the difference by their gcd  yDif /= g;  xDif /= g;  // Convert the pair into a string to use  // as dictionary key  string pair = Convert.ToString(yDif)  + ' '  + Convert.ToString(xDif);  if (!slopeMap.ContainsKey(pair))  slopeMap[pair] = 0;  // increasing the frequency of current  // slope in map  slopeMap[pair]++;  curMax  = Math.Max(curMax slopeMap[pair]);  }  curMax = Math.Max(curMax verticalPoints);  }  // updating global maximum by current point's  // maximum  maxPoint = Math.Max(maxPoint  curMax + overlapPoints + 1);  slopeMap.Clear();  }  return maxPoint;  }  // Driver code  public static void Main(string[] args)  {  int[ ] points = { { -1 1 } { 0 0 } { 1 1 }  { 2 2 } { 3 3 } { 3 4 } };  Console.WriteLine(maxPointOnSameLine(points));  } } // This code is contributed by phasing17 
JavaScript
/* JavaScript program to find maximum number of point which lie on same line */ // Function to find gcd of two numbers let gcd = function(a b) {  if (!b) {  return a;  }  return gcd(b a % b); } // method to find maximum collinear point function maxPointOnSameLine(points){  let N = points.length;  if (N < 2){  return N;  }   let maxPoint = 0;  let curMax overlapPoints verticalPoints;  // Creating a map for storing the data.   let slopeMap = new Map();  // looping for each point  for (let i = 0; i < N; i++)  {  curMax = 0;  overlapPoints = 0;  verticalPoints = 0;    // looping from i + 1 to ignore same pair again  for (let j = i + 1; j < N; j++)  {  // If both point are equal then just  // increase overlapPoint count  if (points[i] === points[j]){  overlapPoints++;  }    // If x co-ordinate is same then both  // point are vertical to each other  else if (points[i][0] === points[j][0]){  verticalPoints++;  }  else{  let yDif = points[j][1] - points[i][1];  let xDif = points[j][0] - points[i][0];  let g = gcd(xDif yDif);  // reducing the difference by their gcd  yDif = Math.floor(yDif/g);  xDif = Math.floor(xDif/g);    // increasing the frequency of current slope.   let tmp = [yDif xDif];  if(slopeMap.has(tmp.join(''))){  slopeMap.set(tmp.join('') slopeMap.get(tmp.join('')) + 1);  }  else{  slopeMap.set(tmp.join('') 1);  }    curMax = Math.max(curMax slopeMap.get(tmp.join('')));  }    curMax = Math.max(curMax verticalPoints);  }  // updating global maximum by current point's maximum  maxPoint = Math.max(maxPoint curMax + overlapPoints + 1);    // printf('maximum collinear point  // which contains current point  // are : %dn' curMax + overlapPoints + 1);  slopeMap.clear();  }    return maxPoint; } // Driver code {  let N = 6;  let arr = [[-1 1] [0 0] [1 1] [2 2]  [3 3] [3 4]];  console.log(maxPointOnSameLine(arr)); } // The code is contributed by Gautam goel (gautamgoel962) 

Sortir
4

Complexité temporelle : Sur 2 calme) où n désignant la longueur de la chaîne.
Espace auxiliaire : O(n)